1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
6

The bell rings and a physics student heads to class. They stop to talk to a few friends. They slow

Physics
1 answer:
grin007 [14]3 years ago
3 0

Answer:

420m

Explanation:

Given parameters:

Time  = 5minutes

Average speed  = 1.4m/s

Unknown:

Distance covered  = ?

Solution:

Speed is the rate of change of distance with time.

 Mathematically;

              Speed  = \frac{distance}{time}  

    Distance  = speed x time

 

Insert the parameters and solve;

   Convert the time to seconds;

              1 minute = 60s

               5 minute = 5  x 60 = 300s

So,

   Insert the parameters and find the distance;

     Distance  = 300 x 1.4  = 420m

You might be interested in
A ball is thrown straight up. What are the velocity and acceleration of the ball at the highest point in its path?
zubka84 [21]

Answer:

b. v = 0, a = 9.8 m/s² down.

Explanation:

Hi there!

The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?

Let´s take a look at the height function:

h(t) = h0 + v0 · t + 1/2 g · t²

Where

h0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity

Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.

Another way to see it (without calculus):

When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.

8 0
3 years ago
1. Which of the following causes physical erosion?
morpeh [17]
1)a 2)D 3)a. I think the answers are
4 0
3 years ago
A family goes on a walk beside a large river. What would most likely happen to the river if the oceans did not exist?
Setler79 [48]

it would be all dried up :((

6 0
3 years ago
Read 2 more answers
A balloon is rising vertically upwards at a velocity of 10m/s. When it is at a height of 45m from the ground, a parachute bails
harina [27]

(a) 30.9 m

Let's analyze the motion of the parachutist. Its vertical position above the ground is given by

y=h+ut+\frac{1}{2}gt^2

where

h = 45 m is the initial height

u = 10 m/s is the initial velocity (upward)

t is the time

g = -9.8 m/s^2 is the acceleration of gravity (downward)

Substituting t=3 s , we find the height of the parachutist when it opens the parachute:

y=45 m+(10 m/s)(3 s)+\frac{1}{2}(-9.8 m/s^2)(3 s)^2=30.9 m

(b) 44.1 m

Here we have to find first the height of the balloon 3 seconds after the parachutist has jumped off from it. The vertical position of the balloon is given by

y = h + ut

where

h = 45 m is the initial height

u = 10 m/s is the initial velocity (upward)

t is the time

Substituting t = 3 s, we find

y = 45 m + (10 m/s)(3 s) = 75 m

So the distance between the balloon and the parachutist after 3 s is

d = 75 m - 30.9 m = 44.1 m

(c) 8.2 m/s downward

The velocity of the parachutist at the moment he opens the parachute is:

v = u +gt

where

u = 10 m/s is the initial velocity (upward)

t is the time

g = -9.8 m/s^2 is the acceleration of gravity (downward)

Substituting t = 3 s,

v = 10 m/s + (-9.8 m/s^2)(3 s)= -19.4 m/s

where the negative sign means it is downward

After t=3 s, the parachutist open the parachute and it starts moving with a deceleration of

a =+5 m/s^2

where we put a positive sign since this time the acceleration is upward.

The total distance he still has to cover till the ground is

d = 30.9 m

So we can find the final velocity by using

v^2-u^2 = 2ad

where this time we have u = 19.4 m/s as initial velocity. Taking the downward direction as positive, the deceleration must be considered as negative:

a = -5 m/s^2

Solving for v,

v=\sqrt{u^2 +2ad}=\sqrt{(19.4 m/s)^2+2(-5 m/s^2)(30.9 m)}=8.2 m/s

(d) 5.24 s

We can find the duration of the second part of the motion of the parachutist (after he has opened the parachute) by using

a=\frac{v-u}{t}

where

a = -5 m/s^2 is the deceleration

v = 8.2 m/s is the final velocity

u = 19.4 m/s is the initial velocity

t is the time

Solving for t, we find

t=\frac{v-u}{a}=\frac{8.2 m/s-19.4 m/s}{-5 m/s^2}=2.24 s

And added to the 3 seconds between the instant of the jump and the moment he opens the parachute, the total time is

t = 3 s + 2.24 s = 5.24 s

8 0
3 years ago
How would you determine the volume of an irregularly shaped object such as a paper clip?
zheka24 [161]

Explanation:

Take a measuring cylinder and fill it with a certain amount of water. Measure this amount of water.

Place the paper clip in the filled measuring cylinder. You will notice that the water level has gone up. When we place the paper clip in the cylinder the volume of the paper clip gets added to the volume that was present in the cylinder.

The volume of the paper clip will be the final volume of water with the paper clip - The initial volume of water without the paper clip.

Any irregularly shaped object's volume can be determined by this method.

3 0
3 years ago
Other questions:
  • What is the de broglie wavelength of a 149-g baseball traveling at 95.4 mph? (1 mile = 1.609 km, h = 6.63 × 10–34 j·s)?
    13·1 answer
  • A string is wrapped around a uniform cylinder of mass M and radius R. The cylinder is released from rest with the string vertica
    5·1 answer
  • Three forces act on a moving object. One force has a magnitude of 83.7 N and is directed due north. Another has a magnitude of 5
    5·1 answer
  • a student pushes on a crate with a force of 100 N directed to the right. what force does the crate exert on a student
    13·1 answer
  • Technician A says that hill assist and hill descent controls are added features to some electronic stability control systems. Te
    9·1 answer
  • Which term, when divided by volume, equals density?
    11·2 answers
  • Question 2 help me and i'll give u brainlest
    6·1 answer
  • Someone pls help with only if you know correct answer!???
    5·2 answers
  • Fill in the blanks with suitable pronouns.
    5·1 answer
  • whirl a rock at the end of a string and it follows a circular path. if the string breaks, the tendency of the rock is to
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!