1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zanzabum
3 years ago
9

Find an expression for the square of the orbital period.

Physics
1 answer:
jenyasd209 [6]3 years ago
8 0

Answer:

T²= 4π²R³/GM

Explanation:

First we know that

Fg= Fc

Because centripetal force must equal gravitational force

So

GMm/R² = Mv²/R

But velocity is 2πR/T

So by substitution we have

GMm/R²= M (2πR/T)/T

We have

T²= 4π²R³/GM as period

You might be interested in
On the planet Xenophous a 1.00 m long pendulum on a clock has a period of 1.32 s. What is the free fall acceleration on Xenophou
Vilka [71]
The period of the pendulum is given by the following equation

T = 2π * sqrt (L/g)

Where g is the gravity (free fall acceleration)

L is the longitude of the pendulum

T is the period.

We find g.............> (T /2π)^2 = L/g

g = L/(T /2π)^2...........> g = 22.657 m/s^2
3 0
3 years ago
On a tiny scale, what happens to an initially neutral object’s mass when it gains a net positive charge through the exchange of
Advocard [28]

Answer:

On a tiny scale, what happens to an initially neutral object’s mass when it gains a net positive charge through the exchange of electrons? (<em>the mass will decrease by a very small factor</em>)

(b) What happens to the mass of an initially neutral object when it gains a net negative charge through the exchange of electrons?  (<em>The mass will increase by a very small factor</em>)

Explanation:

(a) On a tiny scale, what happens to an initially neutral object’s mass when it gains a net positive charge through the exchange of electrons? (<em>the mass will decrease by a very small factor</em>)

The mass of an atom is given by the sum of the masses of the protons, neutrons and electrons. Electrons has lower mass than protons and neutrons, so they have a minor contribution to the total mass of the atom.    

When an object is electrically neutral it means that it has the same number of protons and electrons. For the case of an object positively charged, the rate of protons is greater than the number of electrons. That means that atom lose electrons so the mass will decrease in a very small factor.

(b) What happens to the mass of an initially neutral object when it gains a net negative charge through the exchange of electrons?  (<em>The mass will increase by a very small factor</em>)

For the case when the object is negatively charged, it means that the atom gains electrons from another object, leading to the conclusion that the mass of the atom will increase in a very small factor.  

Key values:

Electron mass: 9.1095×10⁻³¹ Kg

Proton mass: 1.67261×10⁻²⁷ Kg

Neutron mass: 1.67492×10⁻²⁷ Kg

5 0
3 years ago
Water near the poles would most likely be stored as
solniwko [45]
Hey there! 

Answer: Glaciers

Water near the poles would most likely be stored as glaciers. Glaciers are slow moving rivers that are a buildup of ice and snow. 

Thank you!

5 0
3 years ago
Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
Leni [432]

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

3 0
3 years ago
What is the half-life of a radioisotope
IceJOKER [234]
The rate at which a radioactive isotope<span> decays is measured in </span>half-life. The termhalf-life<span> is defined as the time it takes for one-</span>half<span> of the atoms of a radioactive material to disintegrate. </span>Half-lives<span> for various </span>radioisotopes<span> can range from a few microseconds to billions of years.</span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • Two parallel wires carry a current I in the same direction. Midway between these wires is a third wire, also parallel to the oth
    11·2 answers
  • You place a light bulb 8 cm in front of a concave mirror. You then move a sheet of paper back and forth in front of the mirror.
    6·1 answer
  • If you go to the beach and get a cup of water out of the ocean, does the water in the cup have the same average kinetic energy a
    5·1 answer
  • Unpolarized light with intensity I0I0I_0 is incident on an ideal polarizing filter. The emerging light strikes a second ideal po
    14·1 answer
  • Which statement best describes an insulator?
    6·2 answers
  • A pulley system has an efficiency of 74.2%. If you perform 200 J of work, how much useful work does the pulley perform?
    13·1 answer
  • Quick does the watermelon have more or less mass then the 2kg bottle?
    9·1 answer
  • Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 1.6×104 m/s when at a distance
    14·1 answer
  • A student mixes two substances in a large beaker. After two hours, the student sees that the substances have separated again.
    7·1 answer
  • The magnitude of a uniform electric field between two plates is about 1.7 × 106N/C. If the distance
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!