1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
15

Solve the equation . cos2x−cosx=0. on the interval [0,2π)

Mathematics
1 answer:
Charra [1.4K]3 years ago
6 0
Cos <span>2</span><span>x </span><span>= </span><span>2</span><span>cos^</span><span>2</span><span>(</span><span>x</span><span>) </span><span>− </span><span>1</span>
2<span>cos^</span><span>2 </span><span>(</span><span>x</span><span>) </span><span>− </span><span>1 </span><span>− </span><span>cos</span><span>(</span><span>x</span><span>) </span><span>≡ </span><span>2</span><span>cos^</span><span>2</span><span>(</span><span>x</span><span>) </span><span>− </span><span>cos</span><span>(</span><span>x</span><span>) </span><span>− </span><span>1</span>
Let <span>cos</span><span>(</span><span>x</span><span>) </span><span>= </span><span>y</span>
2<span>y^</span><span>2 </span><span>− </span><span>y </span><span>− </span><span>1 
</span><span>(</span><span>2</span><span>y </span><span>+ </span><span>1</span><span>) </span><span>(</span><span>y </span><span>− </span><span>1</span><span>) </span>y <span>= </span><span>−</span><span>1/2 
</span><span>y </span><span>= </span><span>1</span>
y <span>= </span><span>cos</span><span>(</span><span>x)</span>
∴ <span>cos</span><span>(</span><span>x</span><span>) </span><span>= </span><span>−</span><span>1/</span><span>2 ; </span><span>cos</span><span>(</span><span>x</span><span>) </span><span>= </span><span>1</span>
x <span>= </span><span>2/</span><span>3 </span><span>π ;</span><span> </span><span>x </span><span>= </span><span>0</span>
solutions;x <span>= </span><span>2/</span><span>3 </span><span>π</span><span>, </span><span>x </span><span>= </span><span>0</span><span>, </span><span>x </span><span>= </span><span>4/</span><span>3 </span><span>π</span><span>, </span><span>x </span><span>= </span><span>2</span><span>π</span>
You might be interested in
Which shows the equation below written in the form ax2 + bx + c = 0?
Svetach [21]

Answer:

A

Step-by-step explanation:

X^2 + 6X + 8 =3

TRANSPOSE 3 TO LEFT

X^2 + 6X + 8 - 3 = 0

CALCULATE

X^2 + 6 X + 5 = 0

3 0
2 years ago
Question 3 (1 point)
Virty [35]

Answer:

The answer to your question is (4, 6)

Step-by-step explanation:

Data

E ( 9 , 7 )

F ( - 1, 5)

Formula

Xm = \frac{x1 + x2}{2}

Ym = \frac{y1 + y2}{2}

Substitution and simplification

Xm = \frac{9 -1}{2}

Xm = \frac{8}{2}

      Xm = 4

Ym = \frac{7 + 5}{2}

Ym = \frac{12}{2}

      Ym = 6

Result

            (4 , 6)  

7 0
3 years ago
Find the exact value of csc theta if tan theta = sqrt3 and the terminal side of theta is in Quadrant III.
WARRIOR [948]

Answer:

3rd option

Step-by-step explanation:

Using the identities

cot x = \frac{1}{tanx}

csc² x = 1 + cot² x

Given

tanθ = \sqrt{3} , then cotθ = \frac{1}{\sqrt{3} }

csc²θ = 1 + (\frac{1}{\sqrt{3} } )² = 1 + \frac{1}{3} = \frac{4}{3}

cscθ = ± \sqrt{\frac{4}{3} } = ± \frac{2}{\sqrt{3} }

Since θ is in 3rd quadrant, then cscθ < 0

cscθ = - \frac{2}{\sqrt{3} } × \frac{\sqrt{3} }{\sqrt{3} } = - \frac{2\sqrt{3} }{3}

8 0
3 years ago
How old is bob? Fred is 5 years old bob is 3 and 1/2 years yonger.
lorasvet [3.4K]

Answer:

Bob is 1 1/2 Years Old

Step-by-step explanation:

5-3.5=1.5

Hence, Bob is 1.5, or 1 1/2 years old

3 0
3 years ago
Read 2 more answers
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Other questions:
  • Which number is ten times as much as 0.03
    9·2 answers
  • Jaden carried her receipt for the doctor visit to the cashier. The amount billed was $112 and she has $20 co-pay. How much will
    9·1 answer
  • Carla is a US student. She is purchasing used textbooks, because she is balling on a budget (pro tip: don't ever buy new books)!
    10·1 answer
  • Solving multi-step equations <br><br> 2(x + 7) – 34 = 4x – 11x + 4(x - 1)
    7·2 answers
  • Divide 3,724 ÷ 6. What is the remainder? The remainder is?
    7·2 answers
  • A population of flies, P, over a given amount of time, x, is modeled by the expression
    9·1 answer
  • Help me answer this question pls.
    14·2 answers
  • You know the slope of a line and a point on the line that is not the y-intercept. Can you use a graph to write the equation of t
    9·1 answer
  • I need help fast!!!!
    5·1 answer
  • Just need help with the last one plsss :)))
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!