If you need to, you can write and solve an equation for the factor you seek.
... 6×10^10 = factor × 2×10^-3
Divide by 2×10^-3 to find the value of the factor:
... (6×10^10)/(2×10^-3) = factor
... factor = (6/2)×10^(10-(-3))
... factor = 3×10^13
The first number is 3×10^13 times the second number.
_____
An exponent signifies repeated multiplication.
... 10×10×10 = 10³
Just as you cancel common factors when you do division, you can subtract exponents.
![\dfrac{10\cdot 10\cdot 10}{10\cdot 10}=\dfrac{10}{1}=10\\\\\dfrac{10^3}{10^2}=10^{3-2}=10^1=10](https://tex.z-dn.net/?f=%5Cdfrac%7B10%5Ccdot%2010%5Ccdot%2010%7D%7B10%5Ccdot%2010%7D%3D%5Cdfrac%7B10%7D%7B1%7D%3D10%5C%5C%5C%5C%5Cdfrac%7B10%5E3%7D%7B10%5E2%7D%3D10%5E%7B3-2%7D%3D10%5E1%3D10)
The same process works regardless of the signs of the exponents. When multiplying, we add exponents; when dividing we subtract the exponent of the denominator.