1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
7

Passes through (1,9), slope = 2

Mathematics
2 answers:
Scilla [17]3 years ago
8 0
Slope-Intercept Form:y=2x+9
Point-Slope Form:(y-9)=2(x-1)
IRISSAK [1]3 years ago
5 0
Use point slope formula
y - y1 = m(x - x1)
y - 9 = 2(x - 1)
y - 9 = 2x - 2
y = 2x + 7

y=2x+7
You might be interested in
Suppose you are putting up a tent for a camping trip.
SSSSS [86.1K]

The length of the rope needed is 15 feet

Given the following parameters;

  • Height of the pole = 9 foot
  • The distance from the <u>rope away from the base </u>of the pole is 12 feet

Required

  • Length of the rope.

To get the length of the rope, you will use the pythagoras theorem expressed as:

  • c² = a² + b²

Substituting the given parameters:

c² = 9² + 12²

c² =81 + 144

c² = 225

c = √225

c = 15 feet

Therefore the length of the rope needed is 15 feet

Learn more on Pythagoras theorem here: brainly.com/question/231802

7 0
2 years ago
What is the expansion of (3+x)^4
Vlad1618 [11]

Answer:

\left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81

Step-by-step explanation:

Considering the expression

\left(3+x\right)^4

Lets determine the expansion of the expression

\left(3+x\right)^4

\mathrm{Apply\:binomial\:theorem}:\quad \left(a+b\right)^n=\sum _{i=0}^n\binom{n}{i}a^{\left(n-i\right)}b^i

a=3,\:\:b=x

=\sum _{i=0}^4\binom{4}{i}\cdot \:3^{\left(4-i\right)}x^i

Expanding summation

\binom{n}{i}=\frac{n!}{i!\left(n-i\right)!}

i=0\quad :\quad \frac{4!}{0!\left(4-0\right)!}3^4x^0

i=1\quad :\quad \frac{4!}{1!\left(4-1\right)!}3^3x^1

i=2\quad :\quad \frac{4!}{2!\left(4-2\right)!}3^2x^2

i=3\quad :\quad \frac{4!}{3!\left(4-3\right)!}3^1x^3

i=4\quad :\quad \frac{4!}{4!\left(4-4\right)!}3^0x^4

=\frac{4!}{0!\left(4-0\right)!}\cdot \:3^4x^0+\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1+\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2+\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3+\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4

=\frac{4!}{0!\left(4-0\right)!}\cdot \:3^4x^0+\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1+\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2+\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3+\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4

as

\frac{4!}{0!\left(4-0\right)!}\cdot \:\:3^4x^0:\:\:\:\:\:\:81

\frac{4!}{1!\left(4-1\right)!}\cdot \:3^3x^1:\quad 108x

\frac{4!}{2!\left(4-2\right)!}\cdot \:3^2x^2:\quad 54x^2

\frac{4!}{3!\left(4-3\right)!}\cdot \:3^1x^3:\quad 12x^3

\frac{4!}{4!\left(4-4\right)!}\cdot \:3^0x^4:\quad x^4

so equation becomes

=81+108x+54x^2+12x^3+x^4

=x^4+12x^3+54x^2+108x+81

Therefore,

  • \left(3+x\right)^4:\quad x^4+12x^3+54x^2+108x+81
6 0
3 years ago
Given that y is directly proportional to x^2 and that y=2 when x=3 find the value of y when x=6
Sergio039 [100]

Answer:y=4/3

y is directly proportional to x^2 is written as

y \alpha  {x}^{2} introducing a constant,

y=kx^2

but from the question, when y=2 , x=3 . putting it in the formula to get the value of k

2 =  {3}^{2}  \times k

2=9k . <em>divi</em><em>ding</em><em> </em><em>throu</em><em>gh</em><em> </em><em>by</em><em> </em><em>9</em><em> </em><em>to</em><em> </em><em>get</em><em> </em><em>the</em><em> </em><em>valu</em><em>e</em><em> </em><em>of</em><em> </em><em>k</em>

<em>\frac{2}{9}  =  \frac{9k}{9}</em>

<em>k =  \frac{2}{9}</em>

<em>pu</em><em>tting</em><em> </em><em>it</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>ge</em><em>neral</em><em> </em><em>expres</em><em>sion</em>

<em>y =  \frac{2}{9} x</em>

<em>the</em><em> </em><em>valu</em><em>e</em><em> </em><em>of</em><em> </em><em>y</em><em> </em><em>whe</em><em>n</em><em> </em><em>x</em><em>=</em><em>6</em>

<em>y =  \frac{2}{9}  \times 6</em>

<em>y =  \frac{4}{3}</em>

<em>there</em><em>fore</em><em> </em><em>the</em><em> </em><em>valu</em><em>e</em><em> </em><em>of</em><em> </em><em>y</em><em> </em><em>when</em><em> </em><em>x</em><em>=</em><em>6</em><em> </em><em>is</em>

<em>4</em><em>/</em><em>3</em>

3 0
3 years ago
Is this true or no plz help
il63 [147K]
Im pretty sure its No.
7 0
3 years ago
Can a Scalene triangle be a isosceles triangle?<br><br> A: Always<br> B: Never<br> C: Sometimes
arsen [322]
A scalene triangle can never be an isosceles triangle. How? Well, let's take a look at the definition of a scalene triangle. In short, a scalene triangle is a classification of a triangle that does not have any congruent sides. On the other hand, an isosceles triangle is a triangle in which its legs are both congruent. Therefore, if a scalene triangle has two congruent legs, it wouldn't even be a scalene triangle, but instead it would be an isosceles triangle. Hope this helped!
3 0
3 years ago
Other questions:
  • In dire need of help with APR and APY! Please Help!
    8·1 answer
  • Equatons Unit Test<br> Determine whether the units are commensurable or incommensurable with grams?
    12·1 answer
  • I'm not sure about 38 - 53 please help! :)
    13·1 answer
  • None of the three planes intersect: none of the three planes intersect 2. the three planes intersect in one line: the three plan
    9·1 answer
  • The perimeter of a triangle is 510 feet and the sides are in the ratio of 11:16:24. Find the area of the triangle
    12·1 answer
  • Please help I’m really lost. This is my final hw.
    10·1 answer
  • Find the rule and the graph of the function whose graph can be obtained by performing the translation 4 units right and 3
    9·2 answers
  • IF THE RATIO IN A VALENTINE'S
    15·1 answer
  • Answer please and explain
    15·1 answer
  • The price of a car was decreased by 40% to £750.<br> What was the price before the decrease?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!