Answer:
e. 0.0072
Step-by-step explanation:
We are given that a bottling company uses a filling machine to fill plastic bottles with cola. And the contents vary according to a Normal distribution with Mean, μ = 298 ml and Standard deviation, σ = 3 ml .
Let Z =
~ N(0,1) where, Xbar = mean contents of six randomly
selected bottles
n = sample size i.e. 6
So, Probability that the mean contents of six randomly selected bottles is less than 295 ml is given by, P(Xbar < 295)
P(Xbar < 295) = P(
<
) = P(Z < -2.45) = P(Z > 2.45)
Now, using z% score table we find that P(Z > 2.45) = 0.00715 ≈ 0.0072 .
Therefore, option e is correct .
95% of red lights last between 2.5 and 3.5 minutes.
<u>Step-by-step explanation:</u>
In this case,
- The mean M is 3 and
- The standard deviation SD is given as 0.25
Assume the bell shaped graph of normal distribution,
The center of the graph is mean which is 3 minutes.
We move one space to the right side of mean ⇒ M + SD
⇒ 3+0.25 = 3.25 minutes.
Again we move one more space to the right of mean ⇒ M + 2SD
⇒ 3 + (0.25×2) = 3.5 minutes.
Similarly,
Move one space to the left side of mean ⇒ M - SD
⇒ 3-0.25 = 2.75 minutes.
Again we move one more space to the left of mean ⇒ M - 2SD
⇒ 3 - (0.25×2) =2.5 minutes.
The questions asks to approximately what percent of red lights last between 2.5 and 3.5 minutes.
Notice 2.5 and 3.5 fall within 2 standard deviations, and that 95% of the data is within 2 standard deviations. (Refer to bell-shaped graph)
Therefore, the percent of red lights that last between 2.5 and 3.5 minutes is 95%
Let one acute angle be X and one be Y
X+Y=90 -------Eq.1
2X+12=Y
2X-Y=-12------Eq.2
solving eq 1&2 we get,
3x=78
∴X=26
substituting value X in equation.1
X+Y=90
Y=90-26
∴Y=64
⇒answer:- X=26°
Y=64°
Answer:
3 cm
Step-by-step explanation:
The ratio of areas of similar figures is the square of the ratio of linear dimensions. That means the ratio of linear dimensions is the square root of the area ratio. The ratio of the smaller triangle dimensions to the larger is then ...
k = √((8 cm^2)/(18 cm^2)) = √(4/9) = 2/3
Then the corresponding side of the smaller triangle is ...
... k · (4.5 cm) = (2/3)·(4.5 cm) = 3 cm