From my notes it’s the ability to do work
<span>F = ma
</span>Ff = μ*Fn
<span>Fn = Fw
</span>Fw = mg
<span>So we have: </span>
<span>Ff = μmg </span>
<span>And </span>
<span>Ff = ma </span>
<span>So... </span>
<span>μmg = ma </span><span> </span>
<span>μg = a </span>
<span>And we can solve for the acceleration: </span>
<span>(0.15)(9.81 m/s²) = a </span>
<span>a = 1.47 m/s² </span>
Well first of all, when it comes to orbits of the planets around
the sun, there's no such thing as "orbital paths", in the sense
of definite ("quantized") distances that the planets can occupy
but not in between. That's the case with the electrons in an atom,
but a planet's orbit can be any old distance from the sun at all.
If Mercury, or any planet, were somehow moved to an orbit closer
to the sun, then ...
-- its speed in orbit would be greater,
-- the distance around its orbit would be shorter,
-- its orbital period ("year") would be shorter,
-- the temperature everywhere on its surface would be higher,
-- if it has an atmosphere now, then its atmosphere would become
less dense, and might soon disappear entirely,
-- the intensity of x-rays, charged particles, and other forms of
solar radiation arriving at its surface would be greater.
That would be gravitational force. Check out creation.com. Search up "star-formation" in their search bar. Hope this helped.
The motion described here is a projectile motion which is characterized by an arc-shaped direction of motion. There are already derived equations for this type of motions as listed:
Hmax = v₀²sin²θ/2g
t = 2v₀sinθ/g
y = xtanθ + gx²/(2v₀²cos²θ)
where
Hmax = max. height reached by the object in a projectile motion
θ=angle of inclination
v₀= initial velocity
t = time of flight
x = horizontal range
y = vertical height
Part A.
Hmax = v₀²sin²θ/2g = (30²)(sin 33°)²/2(9.81)
Hmax = 13.61 m
Part B. In this part, we solve the velocity when it almost reaches the ground. Approximately, this is equal to y = 28.61 m and x = 31.91 m. In projectile motion, it is important to note that there are two component vectors of motion: the vertical and horizontal components. In the horizontal component, the motion is in constant speed or zero acceleration. On the other hand, the vertical component is acting under constant acceleration. So, we use the two equations of rectilinear motion:
y = v₀t + 1/2 at²
28.61 = 30(t) + 1/2 (9.81)(t²)
t = 0.839 seconds
a = (v₁-v₀)/t
9.81 = (v₁ - 30)/0.839
v₁ = 38.23 m/s
Part C.
y = xtanθ + gx²/(2v₀²cos²θ)
Hmax + 15 = xtanθ + gx²/(2v₀²cos²θ)
13.61 + 15 = xtan33° + (9.81)x²/[2(30)²(cos33°)²]
Solving using a scientific calculator,
x = 31.91 m