If bonds are broken, the energy is released, and if bonds are formed, energy is absorbed. During conversions from chemical energy to thermal energy, the energy stored in the chemical bonds are released and this energy causes surrounding molecules to move faster thus increasing the thermal energy of a substance.
<span>This problem is relatively simple, in order to solve this problem the only formula you need to know is the formula for friction, which is:
Ff = UsN
where Us is the coefficient of static friction and N is the normal force.
In order to get the crate moving you must first apply enough force to overcome the static friction:
Fapplied = Ff
Since Fapplied = 43 Newtons:
Fapplied = Ff = 43 = UsN
and it was given that Us = 0.11, so all you have to do is isolate N by dividing both sides by 0.11
43/0.11 = N = 390.9 which is approximately 391 or C. 3.9x10^2</span>
UV Radiation since it has a higher frequency than the others. The higher the frequency the shorter the wavelength.
Answer:
The maximum height of the ball is 2 m.
Explanation:
Given that,
Mass of ball = 50 g
Height = 1.0 m
Angle = 30°
The equation is

We need to calculate the velocity
Using conservation of energy

Here, ball at rest so initial kinetic energy is zero and at the bottom the potential energy is zero

Put the value into the formula

Put the value into the formula




We need to calculate the maximum height of the ball
Using again conservation of energy

Here, h = y highest point
Put the value into the formula



Put the value of y in the given equation




Hence, The maximum height of the ball is 2 m.