Answer:
Speed of the light in water= 225,000 km/s
Explanation:
At the speed with which light propagates through a homogeneous and transparent medium, it is a constant characteristic of that medium, and therefore, it changes from one medium to another.
Due to its enormous magnitude, the measurement of the speed of light has required the invention of ingenious procedures that will overcome the inconvenience of short land distances in relation to such extraordinary speed.
Astronomical methods and terrestrial methods have been giving ever closer results. At present, the value c = 299,792,458 km / s is accepted for the speed of light in a vacuum. In any transparent material medium the light propagates with a speed that is always lower than c. Thus, for example, in water it does so at around 75% of the speed of light in a vacuum: about 225,000 km / s.
Answer:
With this information is not possible to calculate the mass.
Explanation:
This is a characteristic problem of energy conservation, where kinetic energy becomes potential energy. For this particular problem, we have the initial speed as input data. The moment the ball comes out of the cannon we have the maximum kinetic energy, as the ball goes up the ball will gain more potential energy as the ball loses kinetic energy, until the moment the ball reaches the maximum height. At the maximum height point, the ball will have its maximum potential energy while its kinetic energy is zero. In other words, all the kinetic energy that was, in the beginning, was transformed into potential energy.

In the above equation the masses are canceled and we can determine the maximum height, by means of the initial speed.
![h=\frac{0.5*v^2}{g} [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B0.5%2Av%5E2%7D%7Bg%7D%20%5Bm%5D)
But the mass cannot be determined, since it would be necessary to know the value of the energy, in order to determine the value of the mass.
True is The answer would be I just did this
The work done is 200 J
Explanation:
The work done by a force applied to move an object is given by:

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the direction of the force and of the displacement
In this problem, assuming that the force applied by the workers is parallel to the direction of motion of the crate, we have:
F = 10.0 N
d = 20.0 m

Therefore, the work done is:

Learn more about work here:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
Hz
Explanation:
In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;
V(t) = V sin (ωt + Ф) -----------------(i)
Where;
V = amplitude value of the voltage
ω = angular frequency = 2 π f [f = cyclic frequency or simply, frequency]
Ф = phase difference between voltage and current.
<u><em>Now,</em></u>
From the question,
V(t) = 230 sin (100t) ---------------(ii)
<em><u>By comparing equations (i) and (ii) the following holds;</u></em>
V = 230
ω = 100
Ф = 0
<em><u>But;</u></em>
ω = 2 π f = 100
2 π f = 100 [divide both sides by 2]
π f = 50
f =
Hz
Therefore, the frequency of the voltage is
Hz