Answer:
Series circuit:
The voltage that is measured across the circuit is different.
The current measured in a series circuit remains the same at all points in the circuit.
Parallel circuit:
The current measured across each resistor varies
The voltage measured across a parallel circuit will remain the same
Explanation:
Series and parallel circuits behave differently when it comes to the circulation of current and the interaction with a potential difference.
In a series circuit, the resistances are connected end to end. As a result, the voltage that is measured across the circuit is different once resistance is encountered. However, the current measured in a series circuit remains the same at all points in the circuit.
A parallel circuit behaves in an exactly opposite manner to the series circuit. In a parallel circuit, the resistances are connected side by side. As a result of this, the current measured across each resistor varies as there are circuit branches through which electric current can flow into. On the other hand, the voltage measured across a parallel circuit will remain the same
So, the angular frequency of the blades approximately <u>36.43π rad/s</u>.
<h3>Introduction</h3>
Hi ! Here I will discuss about the angular frequency or what is also often called the angular velocity because it has the same unit dimensions. <u>Angular frequency occurs, when an object vibrates (either moving harmoniously / oscillating or moving in a circle)</u>. Angular frequency can be roughly interpreted as the magnitude of the change in angle (in units of rad) per unit time. So, based on this understanding, the angular frequency can be calculated using the equation :

With the following condition :
= angular frequency (rad/s)
= change of angle value (rad)- t = interval of the time (s)
<h3>Problem Solving</h3>
We know that :
= change of angle value = 1,000 revolution = 1,000 × 2π rad = 2,000π rad/s >> Remember 1 rev = 2π rad/s.- t = interval of the time = 54.9 s.
What was asked :
= angular frequency = ... rad/s
Step by step :



<h3>Conclusion :</h3>
So, the angular frequency of the blades approximately 36.43π rad/s.
Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]