Answer: A voltmeter must have a high resistance where as an ammeter must have a low resistance.
Explanation:
A voltmeter is a device which is connected in parallel to the component across which voltage needs to be measured. In a parallel circuit voltage drop is same at the nodes. The parallel connection must not offer easier path for current to divert from the main circuit and travel. Thus, a voltmeter must have high resistance.
On the other hand, an ammeter which is used to measure current in the circuit must have low resistance as it is connected in series. It should not offer resistance as it would reduce the actual current and measurement would be inaccurate.
66666666666666666666666666666666666666666666666666666666666666666666666666666666666666
Answer:
P = 2439.5 W = 2.439 KW
Explanation:
First, we will find the mass of the water:
Mass = (Density)(Volume)
Mass = m = (1 kg/L)(10 L)
m = 10 kg
Now, we will find the energy required to heat the water between given temperature limits:
E = mCΔT
where,
E = energy = ?
C = specific heat capacity of water = 4182 J/kg.°C
ΔT = change in temperature = 95°C - 25°C = 70°C
Therefore,
E = (10 kg)(4182 J/kg.°C)(70°C)
E = 2.927 x 10⁶ J
Now, the power required will be:

where,
t = time = (20 min)(60 s/1 min) = 1200 s
Therefore,

<u>P = 2439.5 W = 2.439 KW</u>
The universe is 13.8 billion years old.