No additional force is required because it's already going downhill
Answer:
1.57772 m
Explanation:
M = Mass of actor = 84.5 kg
m = Mass of costar = 55 kg
v = Velocity of costar
V = Velocity of actor
= Intial height of actor = 4.3 m
g = Acceleration due to gravity = 9.81 m/s²
As the energy of the system is conserved

As the linear momentum is conserved

Applying conservation of energy again

The maximum height they reach is 1.57772 m
Answer: C. Steel
Explanation: When a sound wave travels through a solid body consisting
of an elastic material, the velocity of the wave is relatively
high. For instance, the velocity of a sound wave traveling
through steel (which is almost perfectly elastic) is about
5,060 meters per second. On the other hand, the velocity
of a sound wave traveling through an inelastic solid is
relatively low. So, for example, the velocity of a sound wave
traveling through lead (which is inelastic) is approximately
1,402 meters per second.
<span>The correct answer is C) a motor.
In particular, we are talking about an AC motor, which produces an alternating current. In an AC motor, a coil is immersed in a rotating magnetic field. Due to the motion of the magnetic field,the angle between the direction of the field and the surface enclosed by the coil changes. As a result, the magnetic flux through the coil changes over time (the magnetic flux is given by:
</span>

<span>
where B is the intensity of the magnetic field, A is the area enclosed by the coil and </span>

<span> is the angle between the direction of B and the perpendicular to the plane of the coil). For Faraday-Newmann-Lenz law, this change in flux induces an electromotive force (emf) into the coil, according to:
</span>

<span>
where the numerator is the variation of magnetic flux and dt is the time interval. This emf in the coil produced an electrical current in the circuit.</span>
Answer: The electromagnetic waves reach Earth, while the mechanical waves do not.
Explanation: