Earthquake S - Waves are examples of transverse waves. The correct option among all the options that are given in the question is the second option. Other good examples of transverse waves are an oscillating string and light waves. A wave is a kind of disturbance that or an oscillation that travels through space.
Answer:
discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC source
Explanation:
Bulbs can emit light in several ways:
* When the emission is carried out by the heating of its filament, the bulb is called incandescent, in general its spectrum is similar to that of a black body, this is a continuous spectrum with a maximum dependent on the fourth power of the temperature of the filament.
* The emission can be by atomic transitions, in this case there is a discrete spectrum formed by the spectral lines of the material that forms the gas of the lamp, in general for the yellow emission the most used materials are mercury and sodium or a mixture of they.
Consequently, as discrete lines are observed by the spectroscope, the emission of the lamp is of the ATOMIC type
Answer:
t = 8 s
Explanation:
In order to find the time taken by the dragster we will use equations of motion. Here, we will use second equation of motion:
s = Vi t + (1/2)at²
where,
s = distance covered = 320 m
Vi = Initial Velocity = 0 m/s (Since, dragster starts from rest)
t = time taken = ?
a = acceleration of dragster = 10 m/s²
Therefore,
320 m = (0 m/s)t + (1/2)(10 m/s²)t²
t² = (320 m)(2)/(10 m/s²)
t = √(64 s²)
<u>t = 8 s</u>
1000 m/s
You have the wavelength and frequency, you just need to solve for velocity. You can do this by multiplying each side of the equation by frequency.