<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m
Answer:
The moon's gravity pulls the Earth to make tides.
Explanation:
The Moons Gravity Pulls On The Earth With Different Strenght Making High Tide And Low Tide.
Hope This Helps!
Archimedes found a piece of gold and a piece of silver with exactly the same mass. He dropped the gold into a bowl filled to the brim with water and measured the volume of water that spilled out. Then he did the same thing with the piece of solver. Although both metals had the same mass, the silver gad a larger volume; therefore, it displaced more water than the gold did. That's because the silver was less dense than gold. Afterwards he applied the same method to the crown for the king he served who had got a new crown from a jeweler who gave it to him. Archimedes found a piece of pure gold that had the same mass as the crown. He placed the pure gold chuck and the crown in water, one at a time. The crown displaced more water the piece of gold. Therefore, its density was less than pure gold.
Answer:
17.7 cm^3
Explanation:
depth, h = 120 m
density of water, d = 1000 kg/m^3
V1 = 1.4 cm^3
P1 = P0 + h x d x g
P2 = P0
where, P0 be the atmospheric pressure
Let V2 be the volume of the bubble at the surface of water.
P0 = 1.01 x 10^5 Pa
P1 = 1.01 x 10^5 + 120 x 1000 x 9.8 = 12.77 x 10^5 Pa
Use
P1 x V1 = P2 x V2
12.77 x 10^5 x 1.4 = 1.01 x 10^5 x V2
V2 = 17.7 cm^3
Thus, the volume of bubble at the surface of water is 17.7 cm^3.
Ahhhh this is a USA server not philipino server so yeah sorry