Answer: 5.96m/s
Explanation:
Given the following :
Mass of car (m) = 1500kg
Velocity (V) = 5.25m/s
Forward force of engine = 1250N
Diatance moved = 4.8m
Final Velocity =?
Final kinetic energy = Initial kinetic energy + work done by engine
Initial kinetic energy = 0.5 × mass × velocity^2
Initial kinetic energy = 0.5 × 1500 × 5.25^2
Initial kinetic energy = 20671.875 J
Work done by engine = Force × distance
Work done by engine = 1250 × 4.8 = 6000J
Final kinetic energy = (20671.875 + 6000) J
= 26671.875 J
From kinetic energy = 0.5mv^2
26671.875 = 1/2 × 1500 × v^2
53343.75 = 1500v^2
v^2 = 35.5625
v = sqrt(35.5625)
v = 5.96m/s
I'm going to assume this is over a horizontal distance. You know from Newton's Laws that F=ma --> a = F/m. You also know from your equations of linear motion that v^2=v0^2+2ad. Combining these two equations gives you v^2=v0^2+2(F/m)d. We can plug in the given values to get v^2=0^2+2(20/3)0.25. Solving for v we get v=1.82 m/s!
Answer:

Explanation:
We need to find the frequency of green light having wavelength o
. It can be calculated as follows :

So, the required frequency of green light is equal to
.
the correct answer is D i just got it on USATestPrep. Your welcome.