The magnetic field strength in a coil is directly proportional to the number of turns, or loops, in the coil.
Therefore, when there are four loops instead of one, the magnetic field strength has increased four times, making it harder to push the magnet in.
Answer:
Both will be attractive in nature.
Explanation:
In the given case, the direction of the magnetic field is same in both loops as the direction of the current is same in both loops. When two parallel straight wire carrying current in the same direction are brought close to each other, the force between them is attractive in nature. In the same way, when two coplanar, circular and concentric loops of wire are carrying current in the same direction, the force between them is attractive in nature. It can be checked by using right hand thumb rule.
Check out other explanations.
brainly.com/question/15555539
#SPJ10
Mass= volume x density
Mass= 90kg/m^3 x 2.3m^3
Therefore, Mass= 207 kg
Answer:
58.27 N
Explanation:
the data we have is:
mass: 
coefficient of friction: 
and we also know the acceleration of gravity is 
We need to do an analysis of horizontal and vertical forces acting on the object:
-------
Vertically the forces acting on the object:
- Normal force
(acting up from the object)
- weight:
(acting down from)
so the sum of forces in the vertical axis "y" are:

from Newton's second Law we know that
, so:

and since the object is not accelerating in the vertical direction (the movement is only horizontal)
, and:

-----------
now let's analyze the horizontal forces
- frictional force:
and since
--> 
- force to move the object:

and the two forces just mentioned must be opposite, thus the sum of forces in the "x" axis is:

and we are told that the crate moves at a steady speed, thus there is no acceleration: 
and we get:

substituting known values:

W = mg = 350 newton
m = W/g = 350/9.8 = 35.71 kg
on mars
W = mg = 134 newton
g = W/m = 134/35.71 = 3.75 meters/second2