Answer:
The average velocity has magnitude = 10 km/h , direction: east
Explanation:
In order to find the average velocity of the car we need to know the final and initial positions, and the time that took to get from one to the other.
Notice that since its movement was 60 km straight east and then from there 40 km straight west, the car is positioned at 20 km to the east of its initial departure point. therefore the vector change in position is a vector 20 km in magnitude, and direction towards the east.
Since it took the car a total of 1.33 hours plus 0.67 hours to reach its final position, the total time elapsed is: 1.33 + 0.67 hours = 2 hours.
Then,the velocity vector has magnitude; 20 km / 2 hours = 10 km/hour
As we mentioned above. the direction of the velocity vector is east.
Answer:
oxygen is used up is the answer
Explanation:
These vaporized molecules are drawn up into the flame, where they react with oxygen from the air to create heat, light, water vapor (H2O) and carbon dioxide (CO2).
Answer:
U = - G m M / r
Explanation:
The gravitational potential energy is given by the expression
U = - G m₁ m₂ / r
dodne G is the gravitational cosntnate (G = 6.67 10⁻¹¹¹), m and m are the mass of the bodies involved
subtype the given values
U = - G m M / r
We will have the following:
Since it is a white rock, then when in a windowless room with just red light the color that will appear to our eyes is red. Since is the only color to reflect.
Explanation:
The magnetic force acting on a current carrying wire in a uniform magnetic field is given by :

or

Where
is the angle between length and the magnetic field
The magnetic force is perpendicular to both current and magnetic field. It is maximum when it is perpendicular to both current and magnetic field.
So, the correct options are :
- The magnetic force on the current-carrying wire is strongest when the current is perpendicular to the magnetic field lines.
- .The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the field.
- The direction of the magnetic force acting on a current-carrying wire in a uniform magnetic field is perpendicular to the direction of the current.