the average speed is 23.4 km per hour cause it is total distance over total time equal to average speed
We can explain this in a molecular level. We know that the difference between a gas and a liquid of the same composition is how fast their molecules are moving. So given a gas, their molecules are farther and faster when moving, but when they are cooled their bulk kinetic energy decreases. In other words their molecules start to move closer and move slower until it behaves more like a liquid molecule. This is the time when gases condense.
Answer:
Draw circles to represent the electron shell of each atom overlapping the circles where the atoms are bonded. Add dots to represent the outer electrons of one type of atom (H). Add crosses to represent the outer electrons of the other type of atom (Cl). Make sure the electrons are always in pairs.
<h3>
Answer:</h3>
150000 J
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Thermodynamics</u>
Specific Heat Formula: q = mcΔT
- <em>q</em> is heat (in J)
- <em>m</em> is mass (in g)
- <em>c</em> is specific heat (in J/g °C)
- ΔT is change in temperature (in °C or K)
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] <em>m</em> = 225 g
[Given] <em>c</em> = 4.184 J/g °C
[Given] ΔT = 133 °C - -26.8 °C = 159.8 °C
[Solve] <em>q</em>
<u>Step 2: Solve for </u><em><u>q</u></em>
- Substitute in variables [Specific Heat Formula]: q = (225 g)(4.184 J/g °C)(159.8 °C)
- Multiply: q = (941.4 J/°C)(159.8 °C)
- Multiply: q = 150436 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
150436 J ≈ 150000 J
Topic: AP Chemistry
Unit: Thermodynamics
Book: Pearson AP Chemistry
Answer:
0.544 M
Explanation:
First find the moles in the final solution
0.8 mols/L *1.7L
1.36 mols
so there is 1.36 mols in 2.5L
concentration will be 1.36/2.5
0.544 M