Answer:
Torrey's neighbour is incorrect because increase in kinetic energy is proportional to velocity. If the velocity increases so will the object's kinetic energy. Because the mass is constant, if the velocity increases, so does the kinetic energy.
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
Answer:
Sue was not right as wood is not a heat conductor and will not allow heat to pass through the spoon thus keeping the hand safe. In a meatal spoon, heat can pass through and burn the hand as meatal is a good conductor of heat.
Answer:
0.136g
Explanation:
A student dissolved 5.00 g of Co(NO3)2 in enough water to make 100. mL of stock solution. He took 4.00 mL of the stock solution and then diluted it with water to give 275. mL of a final solution. How many grams of NO3- ion are there in the final solution?

Initial mole of Co(NO3)2 

Mole of Co(NO3)2 in final solution

Mole of NO3- in final solution = 2 x Mole of Co(NO3)2

Mass of NO3- in final solution is mole x Molar mass of NO3
