Answer:
Distance traveled in 1 liter = 40 km
Explanation:
Distance traveled = Energy / Opposing force = 40 x 10^6 J / 1000 N = 40000 m or 40 km
So, the car will moves to a distance of 40 km per liter under the opposing force of 1000 N…
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
<h2>
Hello!</h2>
The answer is:
The first option, the walker traveled 360m more than the actual distance between the start and the end points.
Why?
Since each block is 180 m long, we need to calculate the vertical and the horizontal distance, in order to calculate how farther did the travel walk between the start and the end points (displacement).
So, calculating we have:
Traveler:


Actual distance between the start and the end point (displacement):

Now, to calculate how much farter did the traveler walk, we need to use the following equation:

Therefore, we have that distance differnce between the distance covered by the walker and the actual distance is 360m.
Hence, we have that the walker traveled 360m more than the actual distance between the start point and the end point.
Have a nice day!
3750 seconds to travel that far
Answer:
Final temperature, 
Explanation:
Given that,
Mass of silver ring, m = 4 g
Initial temperature, 
Heat released, Q = -18 J (as heat is released)
Specific heat capacity of silver, 
To find,
Final temperature
Solution,
The expression for the specific heat is given by :





So, the final temperature of silver is 21.85 degrees Celsius.