The magnification <u>is 31.16.</u>
Magnification is the process of increasing the apparent size of something rather than its physical size. This increase is quantified by a calculated number, also called the "factor". If this number is less than 1, it means size reduction, sometimes called size reduction or reduction.
u = -19.3
f = -18.7 cm.
m = f/f-u
= -18.7/-18.7 +19.3
<u>= 31.16</u>
The term magnification refers to the size of the image produced by the lens compared to the size of the object. For lenses: Magnification "m" is the ratio of image height to object height. The magnification of a lens is defined as the ratio of image height to object height. It is also given by image distance and object distance. equal to the ratio of image distance to object distance.
Learn more about magnification here:-brainly.com/question/15744335
#SPJ4
Well Psychologists are people who are paid to talk to people about their problems or to find out if someone is a danger to themselves or even others. A psychologists investigates the mental state of an individual.
Hope this helps!
Answer:
Hoop will reach the maximum height
Explanation:
let the mass and radius of solid ball, solid disk and hoop be m and r (all have same radius and mass)
They all are rolled with similar initial speed v
by the law of conservation of energy we can write

for solid ball
![[tex]\frac{1}{2}mv^2+\frac{1}{2}I_{ball}\omega^2= mgh_{ball}](https://tex.z-dn.net/?f=%5Btex%5D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%2B%5Cfrac%7B1%7D%7B2%7DI_%7Bball%7D%5Comega%5E2%3D%20mgh_%7Bball%7D)
putting
in the above equation and solving we get

now for solid disk
![[tex]\frac{1}{2}mv^2+\frac{1}{2}I_{disk}\omega^2= mgh_{disk}](https://tex.z-dn.net/?f=%5Btex%5D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%2B%5Cfrac%7B1%7D%7B2%7DI_%7Bdisk%7D%5Comega%5E2%3D%20mgh_%7Bdisk%7D)
putting
in the above equation and solving we get

for hoop
![[tex]\frac{1}{2}mv^2+\frac{1}{2}I_{hoop}\omega^2= mgh_{hoop}](https://tex.z-dn.net/?f=%5Btex%5D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%2B%5Cfrac%7B1%7D%7B2%7DI_%7Bhoop%7D%5Comega%5E2%3D%20mgh_%7Bhoop%7D)
putting
in the above equation and solving we get

clearly from the above calculation we can say that the Hoop will reach the maximum height
Force = 40 - 24 = 16N
Force = mass / acceleration
Acceleration = Force / mass
Acceleration = 16 / 8
Acceleration = 2 m/s^2
False, it experiences a constant change in ACCELERATION in free fall.