Answer:
B = basic
Explanation:
Given data:
[OH⁻] = 5.35×10⁻⁴M
pH = ?
Solution:
pOH = -log[OH⁻]
pOH = - [5.35×10⁻⁴]
pOH = 3.272
it is known that,
pH + pOH = 14
pH = 14- pOH
pH = 14 - 3.272
pH = 10.728
The acidic pH is range from zero to less than 7 while 7 pH is neutral and above 7 the pH is basic. So, the given solution is basic.
CuSO4 *5H20
In the formula of the hydrate, on the first place is the salt and on the second of water. so in ration on the first place should be salt also.
Explanation:
A.
In a diprotic acid, 2 moles of H+ ions is released. Therefore, number of moles of H+ in a diprotic acid = 2 × number of moles of H+ of monoprotic acid.
B.
Equation of the reaction
2NaOH + H2SO4 --> Na2SO4 + 2H2O
Number of moles of H2SO4 = molar concentration × volume
= 0.75 × 0.0105
= 0.007875 moles.
By stoichiometry, since 1 mole of H2SO4 reacts with 2 moles of NaOH. Therefore, number of moles of NaOH = 2 × 0.007875
= 0.01575 moles.
Molar concentration of NaOH = number of moles ÷ volume
= 0.01575 ÷ 0.0175
= 0.9 M of NaOH.
Answer:
Explanation:
Relation between ΔG₀ and K ( equilibrium constant ) is as follows .
lnK = - ΔG₀ / RT

The value of R and T are same for all reactions .
So higher the value of negative ΔG₀ , higher will be the value of K .
Mg(s) + N₂0(g) → MgO(s) + N₂(g)
has the ΔG₀ value of -673 kJ which is highest negative value . So this reaction will have highest value of equilibrium constant K .