The answer is A, biogeochemical cycles.
There are 21 atoms represented in the formula :) hope this helped.
Answer:
A) ΔG° = -3,80x10⁵ kJ
B) E° = 2,85V
Explanation:
A) It is possible to answer this problem using the standard ΔG's of formation. For the reaction:
Mg(s) + Fe²⁺(aq) → Mg²⁺(aq) + Fe(s)
The ΔG° of reaction is:
ΔG° = ΔGFe(s) + ΔGMg²⁺(aq) - (ΔGFe²⁺(aq) + ΔGMg(s) <em>(1)</em>
Where:
ΔGFe(s): 0kJ
ΔGMg²⁺(aq): -458,8 kJ
ΔGFe²⁺(aq): -78,9 kJ
ΔGMg(s): 0kJ
Replacing in (1):
ΔG° = 0kJ -458,8kJ - (-78,9kJ + okJ)
<em>ΔG° = -3,80x10² kJ ≡ -3,80x10⁵ kJ</em>
B) For the reaction:
X(s) + 2Y⁺(aq) → X²⁺(aq) + 2Y(s)
ΔG° = ΔH° - (T×ΔS°)
ΔG° = -629000J - (298,15K×-263J/K)
ΔG° = -550587J
As ΔG° = - n×F×E⁰
Where n are electrons involved in the reaction (<em>2mol</em>), F is faraday constant (<em>96485 J/Vmol</em>) And E° is the standard cell potential
Replacing:
-550587J = - 2mol×96485J/Vmol×E⁰
<em>E° = 2,85V</em>
I hope it helps!
Answer:
I think it's unbalanced
(I'm so sorry if it's wrong)
Hope this helps!
1 mole C3H8 produces 4 moles H2O. So, first we convert 32 grams of propane to moles and then find moles of H2O. Then convert moles of H2O to grams of H2O
Moles of H2O produced = 32 g C3H8 x 1 mole/44 g x 4 moles H2O/mole C3H8 = 2.909 moles H2O
Grams H2O produced = 2.909 moles H2O x 18 g/mole = 52.36 g = 52 g H2O