M₁=50 g
m₀=60 g
w=100m₁/m₀
w=100*50/60=83.3%
Density of the gas is 3.05 × 10⁻³ g / cm³.
<u>Explanation:</u>
Volume of the cylinder = π r² h
where r is the radius and h is the height of the height or the length of the glass tube.
Here r = 4 cm and h = 27.4 cm
Volume of the cylinder = 3.14 × 4 × 4 × 27.4 = 1376.6 cm³
We have to find the mass of the gas by subtracting the mass of the tube filled with the substance from the mass of the empty tube.
Mass of the substance = 258.5 - 254.3 = 4.2 g
We have to find the density using the formula as,

Plugin the values as,
= 3.05 × 10⁻³ g / cm³
So the Density of the gas is 3.05 × 10⁻³ g / cm³.
Answer:
Explanation:
A) O2 (non polar covalent)
B) HF (polar covalent)
C) NaCl (because its ionic)
im not 100% sure hope it helps
Answer: The pressure will be 18.05 atm.
Explanation: Expression for ideal gas equation is :

where,
P = Pressure of the gas = ? atm
V = Volume of the gas = 0.333L
n = Number of moles of gas = 0.250 moles
R = Universal gas constant = 
T = temperature of the gas = 20°C = (273 + 20)K = 293K
Putting values in above equation, we get:

P = 18.05 atm
This problem is providing us with the volume of nitric acid that is titrated with 0.18 L of 0.1-M sodium hydroxide and asks for the concentration of the acid. At the end, the result turns out to be 0.045M, according to the following.
<h3>Acid-base titrations:</h3>
In chemistry, acid-base titrations allow us to quantify the volume or concentration of an acid or base via the following equation:

Where the subscript A stands for the acid and B for the base; which means one can calculate any of the variables there by knowing the other three. This equation is based on the balanced neutralization chemical equation, which takes place between the acid and the base.
Thus, we can write the reaction between NaOH and HNO3 as:

In such a way, we can solve for the concentration of the acid as shown below:

Learn more about titration: brainly.com/question/25485091