Kinetic energy has nothing to do with anything other than motion of the particle.
When a particle with velocity v collides another particle(suppose it is at rest for simplication), assuming that there is perfectly elastic collision between them, the velocity of particle which was at rest becomes mv/M ( assuming mass of particle in motion to be m and at rest to be M) from convervation of linear momentum. And all this transfer of energy happens in a fraction of seconds which is not visible to naked eyes.
Hence 1st option is correct!
Answer: it is D. it is the only possible answer. use the process of elimination. which answers make sense?
Answer:
0.0196 j
Explanation:
i) The formula for kinetic energy is as follows: 0.5*m*v^2
ii) Since we have all the values all that's left is to plug them into the equation
iii) First, WE MUST, Convert grams into kgs as this is the SI unit of mass so 2.45/1000
iv) All that's left now is to plug it into the equation so:
0.5* (s.45/1000)*(4^2)
v) Lastly we add the unit joules at the end as we're talking about energy
Hope this was useful! :)
The efficiency of an ideal Carnot heat engine can be written as:

where

is the temperature of the cold region

is the temperature of the hot region
For the engine in our problem, we have

and

, so the efficiency is
Answer:
8.3m/s
Explanation:
Given parameters:
mass of clay ball = 5kg
Speed of clay ball = 25m/s
mass of clay ball at rest = 10kg
speed of clay ball at rest = 0m/s
Unknown:
Velocity after collision = ?
Solution:
Since the balls stick together, this is an inelastic collision:
m1v1 + m2v2 = v(m1 + m2)
5(25) + 10(0) = v (5 + 10)
125 = 15v
v = 8.3m/s