Answer:
Calculate the work done by a 47 N force pushing a 0.025 kg pencil 0.25 m ... A boy on a bicycle drags a wagon full of newspapers at 0.80 m/s for 30 min ... A power mower does 9.00 x 105 J of work in 0.500 h. ... p: W 2200ch: w will320,000 T/ ... How much electrical energy (in kilowatt hours) would a 60.0 W light bulb use in ..
Explanation:
Answer:
P=4801.5
Explanation:
Given :
work done = W = 100,832 J
time = 21.0 sec
Find:
P = ?
Formula:
P = W/t
Solution:
P = W/t
P = 100,832/21.0
= 4801.52 J/s or Watts
The answer is D. The Moon's gravitational pull
The force between two celestial bodies is a Newtonian gravitational force.
It is also called Newton's law of universal gravitation. We can write it down mathematically in the following way:

We can see from this formula that gravitational force is <span>inversely proportional to the square of the distance between bodies.
The electrostatic force between two charges is Coulombs force. We can write it down like this:
</span>

This force is also inversely proportional to the square of the distance between interacting particles.
The nuclear force is a little bit more complicated. It can be expressed using the so-called Yukawa potential, which has the following form:

This interaction does not follow the inverse-square law.
The final answer should be 8.
Answer:
the acceleration required is 1.37m/s^2
Explanation:
The car is having a constant velocity movement, so if we calculate the time to reach 897m, we can use it to find the acceleration the policeman need to apply to reach the car.

the policeman is traveling with a constant acceleration starting from rest so:
