Answer:
Answer:
28.025 Nm
Explanation:
Angular acceleration, α = 29.5 rad/s^2
oment of inertia, I = 0.95 kg m^2
The torque is defined as
τ = I x α
τ = 0.95 x 29.5
τ = 28.025 Nm
Thus, the torque is 28.025 Nm.
Explanation:
It moved from 0 cm to 4 cm at a constant speed of 1 cm/s.
1.96s and 1.86s. The time it takes to a spaceship hovering the surface of Venus to drop an object from a height of 17m is 1.96s, and the time it takes to the same spaceship hovering the surface of the Earth to drop and object from the same height is 1.86s.
In order to solve this problem, we are going to use the motion equation to calculate the time of flight of an object on Venus surface and the Earth. There is an equation of motion that relates the height as follow:

The initial velocity of the object before the dropping is 0, so we can reduce the equation to:

We know the height h of the spaceship hovering, and the gravity of Venus is
. Substituting this values in the equation
:

To calculate the time it takes to an object to reach the surface of Venus dropped by a spaceship hovering from a height of 17m, we have to clear t from the equation above, resulting:
Similarly, to calculate the time it takes to an object to reach the surface of the Earth dropped by a spaceship hovering from a height of 17m, and the gravity of the Earth
.

Answer: Option (B) is the correct answer.
Explanation:
In a solid, molecules are held together by strong intermolecular forces of attraction. As a result, they are unable to move from their initial place but they can vibrate at their mean position.
Hence, in solid substances the molecules have low kinetic energy.
Whereas in liquids, the molecules are held by less strong intermolecular forces of attraction as compared to solids. Due to which they are able to slide past each other. Hence, they have medium kinetic energy.
In gases, the molecules are held by weak Vander waal forces. Hence, they have high kinetic energy due to which they move rapidly from one place to another leading to more number of collisions.
Hence, gases are able to expand more rapidly as compared to liquids.
Thus, we can conclude that out of the given options solid = low; liquid = medium; gas = high, combination of the state of matter and the corresponding dryer speed is correct.