The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2
Therefore, the velocity of tennis racket after collision is 14.96m/s
Explanation :
The forces acting on hot- air balloon are:
Weight, (W)
Force due to air resistance, (F)
Upthrust force, (U)
Its weight W is acting in downward direction. The upthrust force U acts in upward direction. When the balloon is moving upward, the air resistance is in downward and vice versa.
In this case, the hot-air balloon descends vertically at constant speed.
so,
and
so, ....................(1)
when it is ascending let the weight that it is releasing is R, so
..........(2)
solving equation (1) and (2)
2F is the weight of material that must be released from the balloon so that it ascends vertically at the same constant speed.
Answer:
88.2 C
Explanation:
The current can be defined as the rate of flow of charge in a conductor.
The relation between charge current and time is given as
I = Q/T
I = current, Q= charge and T = time
that is ampere = coulomb / second
The amount of charge passed is from the negative to the positive terminal
shall be given by:
Q = I * t = 3.5mA * 7h * 3600s/h = 88.2 C
Note: take care of the units.
Answer:
coefficient of static friction of the surface and the normal force
Explanation:
The coefficient of static friction of the surface and the normal force exerted on the surface given by equation F = μR
Answer:
The height of the tree is three (3) deep
Explanation:
It's 3 deep
Under 129, comes 125 and 685;
Under 125, comes 52 : Under 685, comes 511;
Under 52, comes 46 : Under 511, is 601.
This is illustrated below.
129
∧
125,685
|,|
52,511
|,|
46,601