Through spectroscopy. Each atom in a gas absorbs and emits light at very specific and unique frequencies. Heating up a gas causes it to glow at these frequencies. If you put the light from a mercury lamp, for example, through a prism there will not be a rainbow. There will only be specific bands of light at certain colors.
On the other hand, white light comes from the sun. The inner part of the sun creates white light as it isn't just a gas state (this specific choosing of frequencies is a gaseous phenomenon) but the atmosphere of the sun is a gas. So when the white light passes through it, it absorbs specific frequencies specific to the elements in the gas. These get scattered (released at random directions) and so many of them don't reach our telescopes. So in a rainbow from stars (including the sun) have dark bands at specific frequencies. You need equipment to focus and see the spectrum closely to notice this. But the missing frequencies are the EXACT frequencies that the gas of the sun's atmosphere would release if heated in a lamp.
So based on what light is emitted (in gas bulbs) or missing from a spectrum (from stars) we can tell what elements are present there.
Answer:
25 cm³
Explanation:
In the conversion of units, we know that are one cubic centimeters (cm³) in a milliliter (mL) .
1 milliliter = 1 cubic centimeter
25 milliliters = 25 cubic centimeters
Therefore, a volume of 25 milliliters is the same as a volume of 25 cubic centimeters.
This ultimately implies that, the volume of an object in milliliters is equivalent to its volume in cubic centimeters.
Answer:
C. 14.93 m
Explanation:
The given frequency of the wave, f = 100 Hz
The given equation for the wave speed, <em>v</em>, is presented as follows;
v = f × λ
The speed of sound in water, v = 1,493 m/s
Therefore, we get;
The wavelength, λ = v/f
∴ λ = 1,493 m/s/(100 Hz) = 14.93 m
The wavelength, λ = 14.93 m.
Answer:
8.5 ohms
Explanation:
from ohms law
V=IR
120=14.1R
divide both sides by 14.1
120/14.1=14.1R/14.1
R=8.5ohms
Answer:
Conduction, convection, and radiation
Explanation:
Conduction is the process in which energy is transferred from a hot body to a cooler body. Convection is a process by which heat is transferred as a result of the movement of heated fluid in the form of air or water. Radiation refers to the transmission of energy through a material medium.
Based on the information provided, a lava lamp could be used to provide an example of conduction, convection, and radiation.