<span>Active Galactic Nuclei.</span>
The can be found elsewhere and as follows:
<span>A. of magnetic effects.
B. the ball tries to pull the rod’s electrons over to it.
C. the rod polarizes the metal.
D. the rod and the ball have opposite charges.
</span><span>
I believe the correct answer is option C. If a negatively charged rod is held near a neutral metal ball, the ball is attracted to the rod. this happens because </span>the rod polarizes the metal. Hope this answers the question.
Part a
Answer: NO
We need to calculate the distance traveled once the brakes are applied. Then we would compare the distance traveled and distance of the barrier.
Using the second equation of motion:

where s is the distance traveled, u is the initial velocity, t is the time taken and a is the acceleration.
It is given that, u=86.0 km/h=23.9 m/s, t=0.75 s, 

Since there is sufficient distance between position where car would stop and the barrier, the car would not hit it.
Part b
Answer: 29.6 m/s
The maximum distance that car can travel is 
The acceleration is same, 
The final velocity, v=0
Using the third equation of motion, we can find the maximum initial velocity for car to not hit the barrier:

Hence, the maximum speed at which car can travel and not hit the barrier is 29.6 m/s.
Answer:
Average speed = 5 m/s
Explanation:
Given the following data;
Distance = 100m
Time = 20 secs
To find the average speed;
Speed = distance/time
Substituting into the formula, we have;
Speed = 100/20
Speed = 5m/s
Therefore, Elsa's average speed is 5 meters per seconds.