Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
I’ll say c Bc it make more since to find the travel distance
What type of recording device? You can have a: camera and voice recorder, these are the only type of recording device I can think of
There may be more, but these are the ones I think you are allowed... hope this helps you ☁︎☀︎☁︎
Answer:
(a) 328 Nm
(b) 79.35 Nm
Explanation:
N = =150, side = 17.5 cm = 0.175 m, i = 42 A, B = 1.7 T
A = side^2 = 0.175^2 = 0.030625 m^2
(a) Torque = N x i x A x B x Sinθ
For maximum torque, θ = 90 degree
Torque = 150 x 42 x 0.030625 x 1.7 x Sin 90
Torque = 328 Nm
(b) θ = 14 degree
Torque = 150 x 42 x 0.030625 x 1.7 x Sin 14
Torque = 79.35 Nm
False, Compounds can contain more than 2 elements.