No I don’t think so. But it worth a try tho. Try it out.
Answer: 14.28 m/s
Explanation:
Assuming the girl is spinning with <u>uniform circular motion</u>, her centripetal acceleration
is given by the following equation:
(1)
Where:
is the <u>centripetal acceleration</u>
is the<u> tangential speed</u>
is the <u>radius</u> of the circle
Isolating
from (1):
(2)
<u />
Finally:
This is the girl's tangential speed
M=3kg
p=33kg.m/s
p=m*v
v=p/m
=33/3
=11m/s
thus option (c)
Answer:
The orbital diagram represents the filling of electrons in the sub levels of an orbit. The filling of the orbitals in sub- levels follow some basic rules and principles.
The orbital diagram of an orbit containing 16 electrons will be as follows:
1s²2s²2p⁶3s²3p⁴
- The maximum number of electrons in each sublevel of the orbitals are:
- 2 electrons for s-sublevel with one orbital
- 6 electrons for p-sublevel with three orbital
- 10 electrons for d-sublevel with five orbital
- 14 electrons for f-sublevel with seven orbital
The rms speed of the molecules of gas A is twice that of gas B. The molecular mass of A is one fourth to that of B.
Answer: Option B
<u>Explanation:</u>
Measuring the speed of particles at a given point in time results in a large distribution of values. Some molecules can move very slowly, others very fast, and because they are still moving in different directions, the speeds may be zero. (Velocity, vector quantity that corresponds to the speed and direction of the molecule.)
To correctly estimate the average velocity, you must take the squares of the mean velocity and take the square root of this value. This is known as the root mean square (rms) velocity and is shown as follows:

Where,
M – Gas’s molar mass
R – Molar mass constant
T – Temperature (in Kelvin)
Given data is rms speed for gas molecule A is twice that of gas molecule B. So,

Therefore, equating the molecule’s rms speed formula for both A and B,

On squaring both sides, we get,

By solving the above equations, we get,
