Explanation:
velocity of disc 
lets call (h) 1 m to make it simple.
= 3.614 m/s
m/s pointing towards this:


velocity of hoop=
lets call (h) 1m to make it simple again.
m/s
![\sqrt(gh) = sqrt(hg)so [tex]4×V_d= \sqrt(4/3hg)V_h=\sqrt(hg)](https://tex.z-dn.net/?f=%5Csqrt%28gh%29%20%3D%20sqrt%28hg%29%3C%2Fp%3E%3Cp%3Eso%20%5Btex%5D4%C3%97V_d%3D%20%5Csqrt%284%2F3hg%29V_h%3D%5Csqrt%28hg%29)
The disc is the fastest.
While i'm on this subject i'll show you this:
Solid ball 
solid disc 
hoop 
The above is simplified from linear KE + rotational KE, the radius or mass makes no difference to the above formula.
The solid ball will be the faster of the 3, like above i'll show you.
solid ball: velocity 
let (h) be 1m again to compare.
m/s
solid disk speed 
uniform hoop speed 
solid sphere speed 
The answer is 2.93m (to 2 dp)
-- If the frequency of a wave is too high for our eyes to detect it ... but not <u>too too</u> high ... we call it an <em>ultraviolet </em>wave.
-- If the wave's frequency is even higher than that, we call it an <em>X-ray</em> wave.
-- If the wave's frequency is even higher than that, we call it a <em>Gamma Ray </em>wave.
90% of stars in the solar system are main sequence stars.
Answer:
The focal length of the lens is 34.047 cm
The power of the needed corrective lens is 2.937 diopter.
Explanation:
Distance of the object from the lens,u = 26 cm
Distance of the image from the lens ,v= -110 cm
(Image is forming on the other side of the lens)
Since ,lens of the human eye is converging lens,convex lens.
Using a lens formula:


f = 34.047 cm = 0.3404 m
Power of the lens = P
