Answer:
The mean is also increased by the constant k.
Step-by-step explanation:
Suppose that we have the set of N elements
{x₁, x₂, x₃, ..., xₙ}
The mean of this set is:
M = (x₁ + x₂ + x₃ + ... + xₙ)/N
Now if we increase each element of our set by a constant K, then our new set is:
{ (x₁ + k), (x₂ + k), ..., (xₙ + k)}
The mean of this set is:
M' = ( (x₁ + k) + (x₂ + k) + ... + (xₙ + k))/N
M' = (x₁ + x₂ + ... + xₙ + N*k)/N
We can rewrite this as:
M' = (x₁ + x₂ + ... + xₙ)/N + (k*N)/N
and  (x₁ + x₂ + ... + xₙ)/N was the original mean, then:
M' = M + (k*N)/N
M' = M + k
Then if we increase all the elements by a constant k, the mean is also increased by the same constant k.
 
        
             
        
        
        
Answer:
9y
Step-by-step explanation:
Add 7y and 5y which equals 12y. Then subtract 3y from 12y and u get 9y. It might be wrong
 
        
                    
             
        
        
        
Answer:9
Step-by-step explanation:
7+2=9
 
        
                    
             
        
        
        
Answer:
x=2
Step-by-step explanation:
To get from the left figure to the right figure on the bottom we multiply by 7
3*7 =21
To go from the right  figure to the left we divide by 7
14/7 = 2
x would equal 2
 
        
             
        
        
        
only the formula? you mean a=bh(a=b*h)