Answer:

Step-by-step explanation:
This problem can be solved by using the expression for the Volume of a solid with the washer method
![V=\pi \int \limit_a^b[R(x)^2-r(x)^2]dx](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_a%5Eb%5BR%28x%29%5E2-r%28x%29%5E2%5Ddx)
where R and r are the functions f and g respectively (f for the upper bound of the region and r for the lower bound).
Before we have to compute the limits of the integral. We can do that by taking f=g, that is

there are two point of intersection (that have been calculated with a software program as Wolfram alpha, because there is no way to solve analiticaly)
x1=0.14
x2=8.21
and because the revolution is around y=-5 we have

and by replacing in the integral we have
![V=\pi \int \limit_{x1}^{x2}[(lnx+5)^2-(\frac{1}{2}x+3)^2]dx\\](https://tex.z-dn.net/?f=V%3D%5Cpi%20%5Cint%20%5Climit_%7Bx1%7D%5E%7Bx2%7D%5B%28lnx%2B5%29%5E2-%28%5Cfrac%7B1%7D%7B2%7Dx%2B3%29%5E2%5Ddx%5C%5C)
and by evaluating in the limits we have

Hope this helps
regards
Add 3 to both sides so that the equation becomes -2x^2 + 5x + 5 = 0.
To find the solutions to this equation, we can apply the quadratic formula. This quadratic formula solves equations of the form ax^2 + bx + c = 0
x = [ -b ± √(b^2 - 4ac) ] / (2a)
x = [ -5 ± √(5^2 - 4(-2)(5)) ] / ( 2(-2) )
x = [-5 ± √(25 - (-40) ) ] / ( -4 )
x = [-5 ± √(65) ] / ( -4)
x = [-5 ± sqrt(65) ] / ( -4 )
x = 5/4 ± -sqrt(65)/4
The answers are 5/4 + sqrt(65)/4 and 5/4 - sqrt(65)/4..
Answer:
The domain is all real numbers
Step-by-step explanation:
In any infinite quadratic equation, the domain is all real numbers.
Answer:
AB and EF are the ones parallel to HG
Step-by-step explanation: