The answer would be 0.55 moles! good luck!
The answer for this issue is:
The chemical equation is: HBz + H2O <- - > H3O+ + Bz-
Ka = 6.4X10^-5 = [H3O+][Bz-]/[HBz]
Let x = [H3O+] = [Bz-], and [HBz] = 0.5 - x.
Accept that x is little contrasted with 0.5 M. At that point,
Ka = 6.4X10^-5 = x^2/0.5
x = [H3O+] = 5.6X10^-3 M
pH = 2.25
(x is without a doubt little contrasted with 0.5, so the presumption above was OK to make)
an atom will gain or lose electrons to obtain 8 electrons in it's outer shell. In other words, elements want to reach an electron configuration of the nearest noble gas.
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!