Answer: The new pressure, if volume and amount of gas do not change is 2.40 atm
Explanation:
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Thus the new pressure, if volume and amount of gas do not change is 2.40 atm
Formula: % by mass = (mass of solute / mass of solution] *100
Data:
mass of solution = 80.85 g
% by mass = 22.4%
Unknown = mass of solute
Solution
% by mass = (mass of solute / mass of solution] *100 = >
mass of solute = % by mass * mass of solution / 100
mass of solute = 22.4 * 80.85 / 100 = 18.11 g
Answer: 18.11 g
Dalton hypothesized that atoms are indivisible and that all atoms of an element are identical. It is now known that <span>atoms are divisible. The answer is letter C</span>
The relation between the volume of the gas and the temperature is established by Charles's law. With a decrease in the temperature, the volume decreases by 45.7 mL. Thus, option c is correct.
<h3>What is Charle's law?</h3>
Charle's law states the direct relation present between the temperature and the volume of the gas. The law is given as:
V₁ ÷ T₁ = V₂ ÷ T₂
Given,
V₁ = 50 mL
T₁ = 303.15 K
T₂ = 277.15 K
Substituting the value the final volume is calculated as:
50 ÷ 303.15 = V₂ ÷ 277.15
V₂ = (50 × 277.15) ÷ 303.15
= 45.71 mL
Therefore, option c. 45.7 mL is the final volume.
Learn more about Charles law here:
brainly.com/question/16927784
#SPJ1
double-displacement reaction
Explanation:
We have the chemical reaction:
Na₂S (aq) + Cd(NO₃)₂ (aq) → CdS (s) + 2 NaNO₃ (aq)
where:
(aq) - aqueous
(s) - solid
This is a double-displacement reaction because the reactants exchange atoms or group of atoms between themselves to form the products. To drive the reaction to the right, one of the products is a precipitate.
Generally we can express the double-displacement reaction as following:
AB + CD → AC + BD
Learn more about:
types of chemical reactions
brainly.com/question/13824617
#learnwithBrainly