Answer: 1709.4 Joules
Explanation:
The quantity of Heat Energy (Q) released on cooling a heated substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since Q = ?
M = 18.5 grams
Recall that the specific heat capacity of copper C = 0.385 J/g.C
Φ = 285°C - 45°C = 240°C
Then, Q = MCΦ
Q = 18.5grams x 0.385 J/g.C x 240°C
Q = 1709.4 Joules
Thus, 1709.4 Joules is released when copper is cooled.
Answer:
All igneous rocks the basis of the rock cycle are formed by plate tectonics. ... The heat from the mantle that fuels plate tectonics causes both igneous and sedimentary rocks to be turned into metamorphic rocks. The metamorphic rocks can be eroded into sedimentary rocks are remelted back into igneous.
Explanation:
Answer:
The correct option is acetic acid
Explanation:
Distillation is the process of separating a mixture of substances based on differences in boiling points. During distillation, the compound with the lowest/least boiling point is distilled and collected first and then the one with the next least boiling point and it goes on like that.
From the explanation above, <u>acetic acid has the least boiling point (in the organic layer) with 118°C and thus will distill first</u>. This is then followed by isopentyl alcohol (130°C) and then isopentyl acetate (142°C) and finally sulfuric acid water (290°C).
Answer:
See explanation below
Explanation:
The question is incomplete, cause you are not providing the structure. However, I found the question and it's attached in picture 1.
Now, according to this reaction and the product given, we can see that we have sustitution reaction. In the absence of sodium methoxide, the reaction it's no longer in basic medium, so the sustitution reaction that it's promoted here it's not an Sn2 reaction as part a), but instead a Sn1 reaction, and in this we can have the presence of carbocation. What happen here then?, well, the bromine leaves the molecule leaving a secondary carbocation there, but the neighbour carbon (The one in the cycle) has a more stable carbocation, so one atom of hydrogen from that carbon migrates to the carbon with the carbocation to stabilize that carbon, and the result is a tertiary carbocation. When this happens, the methanol can easily go there and form the product.
For question 6a, as it was stated before, the mechanism in that reaction is a Sn2, however, we can have conditions for an E2 reaction and form an alkene. This can be done, cause the extoxide can substract the atoms of hydrogens from either the carbon of the cycle or the terminal methyl of the molecule and will form two different products of elimination. The product formed in greater quantities will be the one where the negative charge is more stable, in this case, in the primary carbon of the methyl it's more stable there, so product 1 will be formed more (See picture 2)
For question 6b, same principle of 6a, when the hydrogen migrates to the 2nd carbocation to form a tertiary carbocation the methanol will promove an E1 reaction with the vecinal carbons and form two eliminations products. See picture 2 for mechanism of reaction.
Answer:
119.7 mL.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas.
V is the volume of the container.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas (K).
- For the same no. of moles of the gas at two different (P, V, and T):
<em>P₁V₁/T₁ = P₂V₂/T₂.</em>
- P₁ = 100.0 mmHg, V₁ = 1000.0 mL, T₁ = 23°C + 273 = 296 K.
- P₂ = 1.0 atm = 760.0 mmHg (standard P), V₂ = ??? mL, T₂ = 0.0°C + 273 = 273.0 K (standard T).
<em>∴ V₂ = (P₁V₁T₂)/(T₁P₂) </em>= (100.0 mmHg)(1000.0 mL)(273.0 K)/(296 K)(760.0 mmHg) = 121.4 <em>mL.</em>