Income is how much money u make
Explanation:
The energy emitted by long wavelength waves are smaller to those emitted by short wave lengths.
The energy of a wave is a function of its wavelength and frequency.
- The wavelength of a wave is the distance between its crest.
- Frequency is the amount of waves that passes through a point in a period of time.
- Energy of a wave is directly proportional to frequency and inversely proportional to wavelength.
- The higher the frequency of a wave, the more the energy.
- Waves with a high wavelength carries very little energy.
- Long wavelength radiations have a long wavelength as the name implies. They carry very little energy and have low frequency. Examples are infra-red.
- Short wavelength radiations have short wavelength. They carry very high amount of energy and have very high frequency. Examples are x-rays and gamma rays.
learn more:
Electromagnetic radiation brainly.com/question/6818046
#learnwithBrainly
D. population and nutrients
The correct answer is C. The temperature of the water
Explanation:
In an experiment such as the one described about the speed of snails in water, the manipulated variable is the factor or element that is manipulated on purpose. This means the researcher or researchers slightly change this element to compare how this affects another variable. In this context, the manipulated variable is the temperature of the water because researchers used three different temperatures (cool, room-temperature, and warm), and therefore they manipulated or changed this factor. Moreover, it is expected temperature affects the distance nails move, which is the main variable.
<span>Ni = 5
The Rydberg formula for hydrogen is
1/w = R(1/a^2 - 1/b^2)
where
w = wavelength in vacuum
R = Rydberg constant 1.0973731568508x10^7 1/m
a,b = integers greater than or equal to 1 and a < b
Now we need to select the value for a.
a = 1 will converge towards 91.13 nm
a = 2 converges towards 364.51 nm
a = 3 converges towards 820.14 nm
...
Because of this, we will assume a = 1 for this problem since it converges closest to the wavelength given.
Substitute known values
1/w = R(1/a^2 - 1/b^2)
1/9.504x10^-8 = 1.0973731568508x10^7(1/1^2 - 1/b^2)
10521885.52 = 1.0973731568508x10^7(1/1 - 1/b^2)
0.958824759 = 1 - 1/b^2
-0.041175241 = -1/b^2
0.041175241 = 1/b^2
24.28643927 = b^2
4.928127359 = b
So Ni = 5.</span>