Exercise 1:
exponential decay:
The function is given by:
y = A (b) ^ ((1/3) * t)
Where,
A = 600
We look for b:
(480/600) * (100) = 80%
b = 0.8
Substituting:
y = 600 * (0.8) ^ ((1/3) * t)
We check for t = 6
y = 600 * (0.8) ^ ((1/3) * 6)
y = 384
Answer:
exponential decay:
y = 600 * (0.8) ^ ((1/3) * t)
Exercise 2:
linear:
The function is given by:
y = ax + b
Where,
a = -60 / 2 = -30
b = 400
Substituting we have:
y = -30 * x + 400
We check for x = 4
y = -30 * 4 + 400
y = 280
Answer:
linear:
y = -30 * x + 400
Exercise 3:
exponential growth:
The function is given by:
y = A (b) ^ ((1/3) * t)
Where,
A = 512
We look for b:
(768/512) * (100) = 150%
b = 1.5
Substituting:
y = 512 * (1.5) ^ ((1/2) * t)
We check for t = 4
y = 512 * (1.5) ^ ((1/2) * 4)
y = 1152
Answer:
exponential growth:
y = 512 * (1.5) ^ ((1/2) * t)
400 divided by 5 = 80.
Needs to bag at least 80.
3/5 squared in 9/25, 3*3/5*5 :)
Hi!
Given the ratio of boys to girls, which is 6/9, we can find the number of boys in a total of 75 students like this:
(6/9) * 75 = (6*75)/9 = 450/9 = 50
There are 50 boys.
Hope this helps!