Answer:
ΔH°(f) = -110.5 Kj/mole (exothermic)
Explanation:
C + 1/2O₂ => CO
This is asking for the 'Standard Heat of Formation (ΔH°(f)* for carbon monoxide (CO). Values for many compounds can be found in the appendix of most college general chemistry text books. From Ebbing & Gammon, 11th edition, General Chemistry, Appendix C, page 8A.
*Standard Heat of Formation by definition is the heat gained or lost on formation of a substance (compound) from its basic elements in standard state.
The ΔH°(f) values as indicated are found in the appendix of most college chemistry texts. By choosing any compound, one can determine the standard heat of formation equation for the substance of interest. For example, consider Magnesium Carbonate; MgCO₃(s).The basic standard states of each element is found in the Appendix on Thermodynamic Properties for Substances at 25°C & 1 atm. having ΔH°(f) values = 0.00 Kj/mole. All elements in standard state have a 0 Kj/mol. See appendix and note that under the ΔH°(f) symbol some substances have 0.00 Kj/mol values. The associated element will be in basic standard state,
Standard Heat of Formation Equation for formation of Magnesium Carbonate;
Mg°(s) + C°(gpt)* + 3/2O₂(g) => MgCO₃(s) ; ΔH°(f) = -1111.7 Kj/mole
* gpt => graphite
Answer:
The answers are in the explanation
Explanation:
A. For the reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g); ΔH°=−41kJ.
As the reaction is exothermic ( ΔH°<0), you need to use low temperature to increase the equilibrium yield of hydrogen -LeChatelier's principle-.
We would use <em>low </em>temperature. For an <em>exothermic </em>reaction such as this, <em>decreasing </em>temperature increases the value of K and the amount of products at equilibrium.
B.
c. No. We cannot increase the equilibrium yield of hydrogen by controlling the pressure of this reaction.
It is possible to increase the equilibrium yield of reaction by controlling the amount of reactants added. As reactants and products are gases, the pressure of the reaction will not change the amount of reactants or products in the equilibrium.
I hope it helps!
Answer:
1.90 atm
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
According to above equation, at constant Volume and number of moles, pressure is directly proportional to the temperature. So,

Given ,
P₁ = 1.51 atm
P₂ = ?
T₁ = 23 °C
T₂ = 100 °C ( boiling point of water )
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (23 + 273.15) K = 296.15 K
T₂ = (100 + 273.15) K = 373.15 K
Using above equation as:


<u>New Pressure = 1.90 atm</u>
Answer:
organs group together to form organ systems
Explanation:
Answer:
H-O
Explanation:
because oxygen and hydrogen have very high difference in electronegativity