Given what we know, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
<h3>Why does it take this much energy to boil the water?</h3>
We arrive at this number by taking into account the energy needed to boil 1g of water to its vaporization point. This results in the use of 2260 J of heat energy. We then take this number and multiply it by the total grams of water being heated, in this case, 5.05g, which gives us our answer of 11.4 kJ of energy required.
Therefore, we can confirm that the amount of heat energy that would be required in order to boil 5.05g of water is that of 11.4kJ of heat.
To learn more about the behavior of water visit:
brainly.com/question/1416592?referrer=searchResults
Answer:
The more polar the liquid, the more likely that it is miscible with water. The polarity of a liquid does not affect its miscibility with water. The less polar the liquid, the more likely that it is miscible with water. The more polar the liquid, the less likely that it is miscible with water.
Explanation:
hope it helps you
Acid-base indicator changes color based on pH.
drop some in a solution n watch the color changes. different indicators show different colors at different pH. they usually have standard colors for comparison.
Answer:
1 year- 1 mole
time in general- amount of matter
1 second- 1 atom/ particle