To find the moles, you can use the following formula
moles= Molarity x Liters
Molarity= 2.0 M
Liters= 0.0010 Liters ---------------->>>>>>>>>> 1.0 mL= 0.0010 Liters
moles= 2.0 M x 0.0010 Liters= 0.0020 moles
A) <span>A chandelier has been hanging in the kitchen for years
B) </span><span>A log floats on top of the lake
C) </span><span>You place your book on the top of a flat table
Those are the answers. In each case, there is always a force that balances the weight of the object and keeps them in a static equilibrium. Tension, Buoyancy and Normal force.</span>
<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.
Answer:
13 km
Explanation:
Distance travelled = 5 km + 3 km + 2 km + 3 km = 13 km
Strong Acid cause it has a very low pH