Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Please bear in mind that wurtz reaction fails whenever tertiary alkyl halides are used.
An example of Wurtz reaction is given below:
2R – X + 2Na → R–R + 2Na + X−
<h3>What are organic compounds?</h3>
Organic compounds can simply be defined as those classes of organic molecules which contain carbon atoms covalently bonded to hydrogen atoms (C-H bonds).
Below are some few general characteristics of organic compounds:
- All organic compounds contain carbon.
- Most of them are flammable.
- They are all soluble in non-polar solvents
- Most organic compounds / substances are covalently bonded molecules
Some classes of organic compounds are:
So therefore, Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Learn more about organic compounds:
brainly.com/question/704297
#SPJ1
B: dna cells should be the answer
The answer is 1/8.
Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1.

,
where:
<span>n - a number of half-lives
</span>x - a remained fraction of a sample
2.

where:
<span>

- half-life
</span>t - <span>total time elapsed
</span><span>n - a number of half-lives
</span>
The half-life of Sr-90 is 28.8 years.
So, we know:
t = 87.3 years
<span>

= 28.8 years
We need:
n = ?
x = ?
</span>
We could first use the second equation, to calculate n:
<span>If:

,
</span>Then:

⇒

⇒

<span>⇒ n ≈ 3
</span>
Now we can use the first equation to calculate the remained amount of the sample.
<span>

</span>⇒

⇒

<span>
</span>
Answer:
False
Explanation:
Polar molecules and ionic compounds dissolve in water, not nonpolar molecules
I would say copper, silver, and tin, since an alloy is a mixture of metals and metalloids.