Yes because without movement the tow truck will not be moved with 15,000 N
1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Energy is released by the formation of chemical bonds, and energy is
absorbed when the bonds are broken.
<h3>What is a chemical reaction?</h3>
A chemical reaction involves the formation of new compounds from
reactants . It involves the formation and breaking of bonds in the
elements.
Energy is released by the formation of chemical bonds and this type of
reaction is referred to as exothermic while energy is absorbed when the
bonds are broken and is referred to as an endothermic reaction.
Read more about Chemical reaction here brainly.com/question/16416932
Answer:
Potassium chloride
Explanation:
A solution is formed by a solvent and one or more solutes.
The solvent is the species that is in major proportion and usually defines the state of aggregation of the solution, while the solute/s is/are in minor proportion.
Also, water is known as the universal solvent, so in any solution containing water, it is considered as the solvent.
Then, in an aqueous solution of potassium chloride the solute is potassium chloride.
Answer:
pH = 6.8124
Explanation:
We know pH decreases with increase in temperature.
At room temperature i.e. 25⁰c pH of pure water is equal to 7
We know
Kw = [H⁺][OH⁻]...............(1)
where Kw = water dissociation constant
At equilibrium [H⁺] = [OH⁻]
So at 37⁰c i.e body temperature Kw = 2.4 × 10⁻¹⁴
From equation (1)
[H⁺]² = 2.4 × 10⁻¹⁴
[H⁺] = √2.4 × 10⁻¹⁴
[H⁺] = 1.54 × 10⁻⁷
pH = - log[H⁺]
= - log{1.54 × 10⁻⁷}
= 6.812