Cost per meter(C) = $60/m
Length of rectangular field(L) = 50m
L = 2W
-> W = L/2
-> W = 50/2
-> Width of rectangular field = 25m
Cost of one field length(l) = L x C
-> l = 50 x 60
-> l = $3000
Two of the lengths of the field = 2 x l
-> 2 x $3000
-> $6000
Cost of one field width(w) = W x C
-> w = 25 x 60
-> w = $1500
Two of the widths of the field = 2 x w
-> 2 x $1500
-> $3000
Cost of fencing entire field = $6000+$3000
Hence, total field cost = $9000
Answer:
Graph number 1
Step-by-step explanation:
According to the equation the y-intercept is 2. The only graph with the y-intercept of (0,2) is the first graph. So, graph number 1 represents the function.
Answer:
D = L/k
Step-by-step explanation:
Since A represents the amount of litter present in grams per square meter as a function of time in years, the net rate of litter present is
dA/dt = in flow - out flow
Since litter falls at a constant rate of L grams per square meter per year, in flow = L
Since litter decays at a constant proportional rate of k per year, the total amount of litter decay per square meter per year is A × k = Ak = out flow
So,
dA/dt = in flow - out flow
dA/dt = L - Ak
Separating the variables, we have
dA/(L - Ak) = dt
Integrating, we have
∫-kdA/-k(L - Ak) = ∫dt
1/k∫-kdA/(L - Ak) = ∫dt
1/k㏑(L - Ak) = t + C
㏑(L - Ak) = kt + kC
㏑(L - Ak) = kt + C' (C' = kC)
taking exponents of both sides, we have

When t = 0, A(0) = 0 (since the forest floor is initially clear)


So, D = R - A =

when t = 0(at initial time), the initial value of D =

Answer:
−
4
cot
(
−
45
)
cos
(
390
)
sin
(
330
)
Step-by-step explanation:
Answer:
i will answer but what do you trying to find ?