Answer:
A
Explanation:
The group number of an element is equal to the number of electrons the outermost shell (or highest energy level) contains
Answer:
B. Poor conductor.
Explanation:
It cannot be A, as only 1 metal is not solid at room temp.
It cannot be C, as most metals are ductile.
It cannot be D, as most metals are malleable.
This leaves B, which is not true about metals, as a lot are very good conductors.
Answer:
The net ionic equation is as follows:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Explanation:
The reaction between Hydrocyanic acid, HCN, and sodium hydroxide is a neutralization reaction between a weak acid and a strong base.
Hydrocyanic acid being a weak acid ionizes only slightly, while sodium hydroxide being a strong base ionizes completely. The equation for the reaction is given below:
A. HCN(aq) + NaOH-(aq) ----> NaCN(aq) + H2O(l)
Since Hydrocyanic acid is written in the aqueous form as it ionizes only slightly and the ionic equation is given below:
HCN(aq) + Na+(aq)+OH-(aq) ----> Na+(aq)+CN-(aq) + H2O(l)
Na+ being a spectator ion is removed from the net ionic equation given below:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Answer:
Group 4A (or IVA) of the periodic table includes the nonmetal carbon (C), the metalloids silicon (Si) and germanium (Ge), the metals tin (Sn) and lead (Pb), and the yet-unnamed artificially-produced element ununquadium (Uuq).
The Group 4A elements have four valence electrons in their highest-energy orbitals (ns2np2). Carbon and silicon can form ionic compounds by gaining four electrons, forming the carbide anion (C4-) and silicide anion (Si4-), but they more frequently form compounds through covalent bonding. Tin and lead can lose either their outermost p electrons to form 2+ charges (Sn2+, the stannous ion, and Pb2+, the plumbous ion) or their outermost s and p electrons to form 4+ charges (Sn4+, the stannic ion, and Pb4+, the plumbic ion).
Carbon (C, Z=6).
Carbon is most familiar as a black solid is graphite, coal, and charcoal, or as the hard, crystalline diamond form. The name is derived from the Latin word for charcoal, carbo. It is found in the Earth's crust at a concentration of 480 ppm, making it the 15th most abundant element. It is found in form of calcium carbonate, CaCO3, in minerals such as limestone, marble, and dolomite (a mixture of calcium and
Explanation:
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>A</u></em><em><u>L</u></em><em><u>L</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>K</u></em><em><u>N</u></em><em><u>O</u></em><em><u>W</u></em>
<u>E</u><u>N</u><u>J</u><u>O</u><u>Y</u><u> </u><u>THE</u><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em>