Compared to carbon nanotube, carbon nanofiber (CNF) is a unique quasi-one-dimensional nanostructure with a lot of edges and flaws (CNT). Additionally, their low cost and wide availability make them a valuable nanomaterial for upcoming technology.
<h3>what are the development and characterization of Carbon Nanofiber for Additively Manufactured Piezo resistive Sensors?</h3>
In accordance with the semiconductor material's piezo resistive effect, diffusion resistance is used to manufacture piezo resistive sensors on substrates of semiconductor materials. The diffusion resistor is connected in the substrate in the form of a bridge, allowing the substrate to be employed directly as a measuring sensor element.
- Carbon nanofiber/polylactic acid filament for fused filament fabrication (FFF) and additive manufacturing (AM) strain sensors was studied for the effects of production factors.
- To investigate the effects of CNF weight fraction, extrusion temperature, and number of extrusions on sensor performance, a design of experiments (DOE) approach was used. In the initial extrusion, dry melt mixing was used to combine CNFs and powdered PLA material.
- Through the DOE procedure, it was discovered that extruding CNF/PLA material for two complete extrusions at 185 °C resulted in material with material with material with dramatically improved electrical characteristics in comparison to unmodified material.
- Piezoresistive dog-bone shaped sensors were made using the best manufacturing technique using three different sizes of 5.0, 7.5, and 10.0 wt% CNF/PLA filament.
To know more about Carbon nanofiber/polylactic acid check here:brainly.com/question/15913091
#SPJ4
Answer:
4.65 L of NH₃ is required for the reaction
Explanation:
2NH₃(g) + H₂SO₄(aq) → (NH₄)₂SO₄(s)
We determine the ammonium sulfate's moles that have been formed.
8.98 g . 1mol / 132.06 g = 0.068 moles
Now, we propose this rule of three:
1 mol of ammonium sulfate can be produced by 2 moles of ammonia
Therefore, 0.068 moles of salt were produced by (0.068 . 29) / 1 = 0.136 moles of NH₃. We apply the Ideal Gases Law, to determine the volume.
Firstly we do unit's conversions:
27.6°C +273 = 300.6 K
547.9 mmHg . 1 atm / 760 mmHg = 0.721 atm
V = ( n . R . T ) / P → (0.136 mol . 0.082 L.atm/mol.K . 300.6K) / 0.721 atm
V = 4.65 L
Answer:
<u></u>
Explanation:
A <em>first order reaction</em> follows the law:
, where [A] is the concentraion of the reactant A.
Equivalently:
![\dfrac{d[A]}{dt}=-k[A]](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-k%5BA%5D)
Integrating:
![\dfrac{d[A]}{[A]}=-kdt](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%3D-kdt)
![\ln \dfrac{[A]}{[A_o]}=-kt](https://tex.z-dn.net/?f=%5Cln%20%5Cdfrac%7B%5BA%5D%7D%7B%5BA_o%5D%7D%3D-kt)
Half-life means [A]/[A₀] = 1/2, t = t½:
That means that the half-life is constant.
The slope of the plot of ln [N₂O₅] is -k. Then k is equal to 6.40 × 10⁻⁴ min⁻¹.
Thus, you can calculate t½:
t½ = ln(2) / 6.40 × 10⁻⁴ min⁻¹
t½ = 1,083 min.
Rounding to 3 significant figures, that is 1,080 min.
The difference between all three Magnesium, Mg isotopes is in; the number of neutrons.
<h3>What is
isotopy?</h3>
Isotopy is a property of elements in which case the element has two or more types of atoms that have the same atomic number and hence, same position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei.
- Ultimately, the distinctive feature between the three isotopes is in their number of neutrons
Read more on isotopes;
brainly.com/question/14220416