Answer:
HF
H₂S
H₂CO₃
NH₄⁺
Explanation:
<em>Which acid in each of the following pairs has the stronger conjugate base?</em>
According to Bronsted-Lowry acid-base theory, <em>the weaker an acid, the stronger its conjugate acid</em>. Especially for weak acids, pKa gives information about the strength of such acid. <em>The higher the pKa, the weaker the acid.</em>
<em />
- Of the acids HCl or HF, the one with the stronger conjugate base is HF because it is a weak acid.
- Of the acids H₂S or HNO₂, the one with the stronger conjugate base is H₂S because it is a weaker acid. pKa (H₂S) = 7.04 > pKa (HNO₂) = 3.39
- Of the acids H₂CO₃ or HClO₄, the one with the stronger conjugate base is H₂CO₃ because it is a weak acid.
- Of the acids HF or NH₄⁺, the one with the stronger conjugate base is NH₄⁺ because it is a weaker acid. pKa (HF) = 3.17 < pKa (NH₄⁺) = 9.25
Decomposition is a part of the carbon cycle that occurs slowly hence movement of carbon dioxide into the atmosphere when bacteria decomposes dead matter is a slow part of the carbon cycle.
<h3>What is the carbon cycle?</h3>
The carbon cycle is part of the biogeochemical cycles that exist in nature. It refers to the movement of carbon in the ecosystem. The carbon cycle cuts across the air, the land and the water bodies.
The process in the carbon cycle that occurs slowly among the options is the movement of carbon dioxide into the atmosphere when bacteria decomposes dead matter.
Learn more about carbon cycle: brainly.com/question/1627609
Answer:
Carbon is released back into the atmosphere when organisms die, volcanoes erupt, fires blaze, fossil fuels are burned, and through a variety of other mechanisms.Humans play a major role in the carbon cycle through activities such as the burning of fossil fuels or land development.
Answer:
d
Explanation:
pv=nrt
2.5×1.01×10^5×8×10^-3=3×8.31×T
T=
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation. (Option C)
<h3>How do systems at equilibrium respond to perturbation?</h3>
When a system at equilibrium suffers a perturbation, it shifts its equilibrium position to counteract such perturbation.
Let's consider a solution of acetic acid at equilibrium.
CH₃CO₂H(aq) = CH₃CO₂⁻(aq) + H⁺(aq)
If more acetic acid were added to the solution, the system will shift toward the products to counteract such an increase.
How would the system change if more acetic acid were added to the solution?
A. [H⁺] would decrease and [CH₃CO₂⁻] would increase. NO.
B. [H⁺] and [CH₃CO₂⁻] would decrease. NO.
C. [H⁺] and [CH₃CO₂⁻] would increase. YES. Both products would increase.
D. [H⁺] would increase and [CH₃CO₂⁻] would decrease. NO.
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation.
Learn more about equilibrium here: brainly.com/question/2943338
#SPJ1