The answer I believe is 3.340kj.
Answer:
I believe the answer is B
Explanation:
A nucleus of an atom has protons and neutrons. We know that a proton has a charge of +1 , while a neutron has no charge, or 0 . Therefore, the nucleus of an atom will always have a positive charge.
Answer:
6
Explanation:
To determine the number of neutrons we round 10.8 to 11 and subtract the atomic number (5) and get 6; therefore, boron has 6 neutrons.
Answer:
- Empirical:

- Molecular:

Explanation:
Hello,
In this case, based on the information regarding the combustion, the moles of carbon turn out:

Moreover, the moles of hydrogen:

Thus, the subscripts of carbon and hydrogen in the hydrocarbon turn out:

Now, looking for a suitable whole number we obtain the following empirical formula as 2.335 times 3 is 7 for hydrogen:

In such a way, that compound has a molar mass of 43 g/mol, thus, the whole compound's molar mass is 86.18 g/mol for which the molecular formula is twice the empirical one, therefore:

Which is hexane.
Best regards.
Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.