Answer:
When metals react they lose electrons.
Explanation:
An ion is defined as a molecule or atom made up of a different number of electrons and protons. This makes the electric charge of the molecule net, not neutral.
In other words, an ion is a molecule or atom that has a positive or negative electric charge, making it an atom whose electric charge is not neutral.
The characteristic property of a metallic atom is to lose one or more of its electrons to form a positive ion. That is, metals lose electrons and acquire a net positive charge, which is why they are electropositive.
Answer:
I think is b
Explanation:
if im wrong, heres some information:
mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium.[1] While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.
Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
C because the volume of gas at 2.000 atm is 9.38L original volume was 3000l
The answer is oxidation.
That is in the redox fueling reaction,
succinate + NAD ↔fumarate + NADPH, the succinate molecule is undergoing oxidation.
As succinate molecule is providing electrons to NAD, so that it can be reduced from NAD to NADPH. So it is losing electrons and undergoing oxidation.
So the answer is oxidation.