Answer:
The answer to your question is below:
Explanation:
Having exactly the same data as the previous experiment I think that having the same data as the previous experiment is extremely important but not the most important, for me is the second most important.
Using the same procedure and variables as the previous experiment For me, this is the most importan thing when a scientist is designing an experiment, because if he or she follow exactly the same procedure and variables, then the results will be very close.
Conducting an experiment similar to the previous experiment This characteristic is important but not the most important.
Using the same laboratory that was used in the previous experiment It is not important the laboratory, if the procedure and variables are the same, your experiment must give the same results in whatever laboratory.
Answer:
The answer would be meniscus.
We are already given with the mass of the Xe and it is 5.08 g. We can calculate for the mass of the fluorine in the compound by subtracting the mass of xenon from the mass of the compound.
mass of Xenon (Xe) = 5.08 g
mass of Fluorine (F) = 9.49 g - 5.08 g = 4.41 g
Determine the number of moles of each of the element in the compound.
moles of Xenon (Xe) = (5.08 g)(1 mol Xe / 131.29 g of Xe) = 0.0387 mols of Xe
moles of Fluorine (F) = (4.41 g)(1 mol F/ 19 g of F) = 0.232 mols of F
The empirical formula is therefore,
Xe(0.0387)F(0.232)
Dividing the numerical coefficient by the lesser number.
<em> XeF₆</em>
Control or controlled group is the part of the experiment where conditions are kept the same.
Answer:
AINO3 - 89 g/mol
Explanation:
Molar mass of a compound or molecule is obtained by summing the individual atomic masses of the elements that makes the compound.
In this question, the elements are Al, N and O
The molar mass is given as;
Molar mass = Al + N + 3 (O)
Al = 27
N = 14
O = 16
Molar mass = 27 + 14 + 3(16)
Molar mass = 89 g/mol