Answer:
endothermic reaction
Explanation:
It simply means that you are witnessing<u> an endothermic reaction</u>.
An endothermic reaction is one that absorbs heat energy from its surrounding, thereby leaving the reaction vessel with a lower temperature as compared to before the reaction.
It is as opposed to exothermic reactions which are reactions that give off energy in the form of heat to the surrounding, thereby leaving a reaction vessel warmer than before the reaction.
<em>In this case, the formation of ice crystals outside the test tube means that heat energy has been absorbed by the reaction which leaves the vessel a temperature cold enough to activate the formation of ice. </em>
The specific heat capacity of this chunk of metal is equal to 0.32 J/g°C.
<u>Given the following data:</u>
- Quantity of energy = 400 Joules
- Initial temperature = 20°C
To determine the specific heat capacity of this chunk of metal:
<h3>
The formula for quantity of heat.</h3>
Mathematically, quantity of heat is given by the formula;

<u>Where:</u>
- Q represents the quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Making c the subject of formula, we have:

Substituting the given parameters into the formula, we have;

Specific heat, c = 0.32 J/g°C.
Read more on specific heat here: brainly.com/question/2834175
Answer:
5.6L
Explanation:
At STP, the pressure and temperature of an ideal gas is
P = 1 atm
T = 273.15k
Volume =?
Mass = 9.5g
From ideal gas equation,
PV = nRT
P = pressure
V = volume
n = number of moles
R = ideal gas constant =0.082J/mol.K
T = temperature of the ideal gas
Number of moles = mass / molar mass
Molar mass of F2 = 37.99g/mol
Number of moles = mass / molar mass
Number of moles = 9.5 / 37.99
Number of moles = 0.25moles
PV = nRT
V = nRT/ P
V = (0.25 × 0.082 × 273.15) / 1
V = 5.599L = 5.6L
The volume of the gas is 5.6L
Answer:
Hello There!!
Explanation:
The temperature stays the same when a solid is melting or a liquid is boiling (changing state) during a change of state, even though heat energy is being absorbed.
hope this helps,have a great day!!
~Pinky~
Answer: 250
Explanation:
You work this problem by using proportions.
A proportion is the equalization of two ratios.
Here you assume that the ratio of fish with tags to total fish that you catch is the same than the ratio of fish with tags to total fish in the pond.
Mathematically:
- 5 fish with tag / 25 fish = 50 fish with tag / x
Solve for x:
- Multiplication property of equality: x × 5 = 50 × 25
- Division property of equality: x = 50 × 25 / 5
- Result: 250