To balance the chemical reaction above, we need to remember that the amount of the elements in the reactant side should be equal to the amount of that element in the product side. The balanced chemical reaction is written as:
<span>N2O5 +H2O --->2HNO3</span>
Answer: B -Network solids
Ionic solids are held by positive and negative charged ions bonded by electrostatic forces. The electrostatic force is much stronger than dipole–dipole interactions, London dispersion forces, hydrogen bonding.
Molecular solids are held by dipole–dipole interactions, London dispersion forces, or hydrogen bonds. Benzene is an example of this. These inter-molecular force are much weaker than electrostatic force.
The metallic bonds are much weaker than electrostatic force. Similarly, in non-metallic solids the atoms are held by covalent bonds. These covalent bonds are weaker than the electrostatic force.
Thus we can conclude that electrostatic force is the strongest when compared to dipole–dipole interactions, London dispersion forces, hydrogen bonding,covalent and metallic bonds. Thus ionic solids will have the highest melting point as more energy is required to break the ionic bonds as this is the strongest bond compared to the other bonds.
Answer:
-2
Explanation:
carbonate oxifation number is -2
Answer:
2Ag(s) + 1H2S(g) → 1Ag2S(s) + 1H2(g)
Explanation:
Step 1: Data given
Ag(s) + H2S(g) → Ag,S(s) + H2(g)
Ag has and oxidation number of +1
S has an oxidation number of -2
H has an oxidation number of +1
Step 2: The balanced equation
Ag+ + 2H+ + S^2- →
The silver ion and the sulfur ion will bind, but we need 2 silver atoms to bind with 1 sulfur atom.
2 H- atoms will appear as H2.
The balanced equation is:
2Ag+ + 2H+ +S^2- → Ag2S + H2
2Ag(s) + 1H2S(g) → 1Ag2S(s) + 1H2(g)
Answer:
Chlorine is limiting reactant
Explanation:
Based on the reaction:
Cl₂ + 2NaOH → NaClO + NaCl + H₂O
<em>1 mole of chlorine reacts with 2 moles of NaOH</em>
<em />
To find limiting reactant, we need to determine the moles of the reactants:
<em />
<em>Moles Cl₂ -Molar mass: 70.9g/mol-:</em>
800lb Cl₂ * (453.6g / 1lb) * (1mol / 70.90g) =
5118 moles Cl₂
<em>Moles NaOH -Molar mass: 40g/mol-:</em>
1200lb NaOH * (453.6g / 1lb) * (1mol / 40g) =
13608 moles NaOH
For a complete reaction of 13608 moles of NaOH you need:
13608 moles NaOH * (1mol Cl₂ / 2 moles NaOH) = 6804 moles of Cl₂
As the solution contains just 5118 moles of chlorine,
<h3>Chlorine is limiting reactant</h3>