Complete Question
The complete question is shown on the first uploaded image
Answer:
The uncertainty in inverse frequency is ![\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s](https://tex.z-dn.net/?f=%5CDelta%20%20%5B%5Cfrac%7B1%7D%7Bw%7D%20%5D%3D%20%20%5Cfrac%7B3%7D%7B2000%7D%20%5C%20s)
Explanation:
From the question we are told that
The value of the proportionality constant is 
The strength of the magnetic field is 
The change in this strength of magnetic field is
The magnetic field is given as

Where
is frequency
The uncertainty or error of the field is given as
![\Delta B = \frac{k }{[\frac{1}{w}^]^2 } \Delta [\frac{1}{w} ]](https://tex.z-dn.net/?f=%5CDelta%20%20B%20%20%3D%20%20%5Cfrac%7Bk%20%7D%7B%5B%5Cfrac%7B1%7D%7Bw%7D%5E%5D%5E2%20%7D%20%20%5CDelta%20%5B%5Cfrac%7B1%7D%7Bw%7D%20%5D)
The uncertainty in inverse frequency is given as
![\Delta [\frac{1}{w} ] = \frac{\Delta B}{k [\frac{1}{w^2} ]}](https://tex.z-dn.net/?f=%5CDelta%20%20%5B%5Cfrac%7B1%7D%7Bw%7D%20%5D%20%20%3D%20%5Cfrac%7B%5CDelta%20B%7D%7Bk%20%5B%5Cfrac%7B1%7D%7Bw%5E2%7D%20%5D%7D)
![\Delta [\frac{1}{w} ]= \frac{\Delta B}{k (B)^2 }](https://tex.z-dn.net/?f=%5CDelta%20%20%5B%5Cfrac%7B1%7D%7Bw%7D%20%5D%3D%20%20%5Cfrac%7B%5CDelta%20B%7D%7Bk%20%28B%29%5E2%20%7D)
substituting values
![\Delta [\frac{1}{w} ]= \frac{3}{5 (20)^2 }](https://tex.z-dn.net/?f=%5CDelta%20%20%5B%5Cfrac%7B1%7D%7Bw%7D%20%5D%3D%20%20%5Cfrac%7B3%7D%7B5%20%2820%29%5E2%20%7D)
![\Delta [\frac{1}{w} ]= \frac{3}{2000} \ s](https://tex.z-dn.net/?f=%5CDelta%20%20%5B%5Cfrac%7B1%7D%7Bw%7D%20%5D%3D%20%20%5Cfrac%7B3%7D%7B2000%7D%20%5C%20s)
The sign of the charged particle is positively charged.
<h3>What is potential difference?</h3>
- When a single charge is transported in an electric field, work is done by the potential difference (also known as electrical potential).
- There is potential energy stored in this charge that could flow when work is done on it.
- Voltage is the possibility of a single charge flowing. The need to flow increases with voltage.
- Here, voltage can be the potential differences.
The potential difference between the 2 points determines the movement of that particle. An electron moves from lower to higher potential which is negatively charged, and a positively charged particle moves from higher to lower potential.
Now, since the particle is moving from a point A having 160 v potential to point B having 100 v potential that is it is moving from higher potential to a lower potential therefore the particle will be a positively charged one.
Learn more about potential difference,
brainly.com/question/23716417
#SPJ1
A.) We use the famous equation proposed by Albert Einstein written below:
E = Δmc²
where
E is the energy of the photon
Δm is the mass defect, or the difference of the mass before and after the reaction
c is the speed of light equal to 3×10⁸ m/s
Substituting the value:
E = (1.01m - m)*(3×10⁸ m/s) = 0.01mc² = 3×10⁶ Joules
b) The actual energy may be even greater than 3×10⁶ Joules because some of the energy may have been dissipated. Not all of the energy will be absorbed by the photon. Some energy would be dissipated to the surroundings.
Answer:
this app is for solving doubts not sending links ok
Answer:
4.71m/s
Explanation:
Average speed = Total distance travelled ÷ Total time taken.
80/17=4.71
4.71m/s